Skip to:Content
|
Bottom
Cover image for Understanding UMTS radio network modelling, planning and automated optimisation : theory and practice
Title:
Understanding UMTS radio network modelling, planning and automated optimisation : theory and practice
Publication Information:
West Sussex, England : John Wiley & Sons, 2006
ISBN:
9780470015674

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010106531 TK5103.483 U52 2006 Open Access Book Book
Searching...

On Order

Summary

Summary

This book sets out to provide the theoretical foundations that will enable radio network planners to plan model and optimize radio networks using state-of-the-art findings from around the globe. It adopts a logical approach, beginning with the background to the present status of UMTS radio network technology, before devoting equal coverage to planning, modelling and optimization issues. All key planning areas are covered, including the technical and legal implications of network infrastructure sharing, hierarchical cell structure (HCS) deployment, ultra-high-site deployment and the benefits and limitations of using computer-aided design (CAD) software. Theoretical models for UMTS technology are explained as generic system models, stand-alone services and mixed services. Business modelling theory and methods are put forward, taking in propagation calculations, link-level, UMTS static and UMTS dynamic simulations. The challenges and goals of the automated optimization process are explored in depth using cutting-edge cost function and optimization algorithms. This theory-based resource containing prolific illustrative case studies explains the reasons for UMTS radio networks performance issues and how to use this foundational knowledge to model, plan and optimize present and future systems.


Author Notes

Maciej J. Nawrocki currently works for the Centre for Telecommunications Research at King's College London. His areas of interest include WCDMA based cellular networks, CDMA network planning methods, optimization methods for 3G systems radio planning and, latterly, efficient modeling algorithms for UMTS radio network organization.

Mischa Dohler has a PhD from Kings College London where he has also held a lecturing post. His areas of interest include propagation, coding, transceiver design and link level simulations.

Hamid Aghvami is presently Director of the Centre for Telecommunications Research at King's College London. He is considered a world expert in the field of personal and mobile radio communications and is a fellow of the Royal Academy of Engineering, a fellow member of the IEE and senior member of the IEEE.


Table of Contents

Maciej J. Nawrocki and Mischa Dohler and A. Hamid AghvamiPeter GouldMaciej J. Grzybkowski and Ziemowit Neyman and Marcin NeyMaciej J. Nawrocki and Mischa Dohler and A. Hamid AghvamiKamil Staniec and Maciej J. Grzybkowski and Karsten ErlebachHans-Florian Geerdes and Andreas Eisenblatter and Piotr M. Slobodzian and Mikio Iwamura and Mischa Dohler and Rafal Zdunek and Peter Gould and Maciej J. NawrockiMarcin NeyMarcin NeyMaciej J. NawrockiZiemowit Neyman and Mischa DohlerMaciej J. GrzybkowskiMarcin Ney and Peter Gould and Karsten ErlebachRoni Abiri and Maciej J. NawrockiAlexander Gerdenitsch and Andreas Eisenblatter and Hans-Florian Geerdes and Roni Abiri and Michael Livschitz and Ziemowit Neyman and Maciej J. NawrockiRoni Abiri and Ziemowit Neyman and Andreas EisenblattercHans-Florian GeerdesZwi Altman and Herve Dubreil and Ridha Nasri and Ouassim Ben Amor and Jean-Marc Picard and Vincent Diascorn and Maurice ClercKarsten Erlebach and Zbigniew Joskiewicz and Marcin Ney
Prefacep. xiii
Acknowledgmentp. xvii
List of Acronymsp. xix
Notes on Editors and Contributorsp. xxix
Part I Introductionp. 1
1 Modern Approaches to Radio Network Modelling and Planningp. 3
1.1 Historical aspects of radio network planningp. 3
1.2 Importance and limitations of modelling approachesp. 5
1.3 Manual versus automated planningp. 7
Referencesp. 9
2 Introduction to the UTRA FDD Radio Interfacep. 11
2.1 Introduction to CDMA-based networksp. 11
2.2 The UTRA FDD air interfacep. 15
2.2.1 Spreading codesp. 15
2.2.2 Common physical channelsp. 20
2.2.3 Dedicated physical channelsp. 27
2.3 UTRA FDD key mechanismsp. 29
2.3.1 Cell breathing and soft capacityp. 29
2.3.2 Interference and power controlp. 31
2.3.3 Soft handover and compressed modep. 32
2.4 Parameters that require planningp. 34
2.4.1 Signal path parametersp. 34
2.4.2 Power allocationp. 35
2.4.3 System settingsp. 35
Referencesp. 35
3 Spectrum and Service Aspectsp. 37
3.1 Spectrum aspectsp. 37
3.1.1 Spectrum requirements for UMTSp. 38
3.1.2 Spectrum identified for UMTSp. 39
3.1.3 Frequency arrangements for the UMTS terrestrial componentp. 39
3.1.4 Operator spectrum demandsp. 45
3.2 Service features and characteristicsp. 46
Referencesp. 52
4 Trends for the Near Futurep. 55
4.1 Introductionp. 55
4.2 Systems yet to be deployedp. 56
4.2.1 UTRA TDDp. 56
4.2.2 TD-SCDMAp. 57
4.2.3 Satellite segmentp. 58
4.3 Enhanced coveragep. 60
4.3.1 Ultra High Sites (UHS)p. 61
4.3.2 High Altitude Platform System (HAPS)p. 61
4.4 Enhanced capacityp. 61
4.4.1 Hierarchical Cell Structures (HCS)p. 61
4.4.2 High Speed Downlink Packet Access (HSDPA)p. 62
4.4.3 High Speed Uplink Packet Access (HSUPA)p. 63
4.4.4 Orthogonal Frequency Division Modulation (OFDM)p. 64
4.5 Heterogeneous approachesp. 64
4.5.1 Wireless LANsp. 64
4.5.2 Wireless MANs (WiMAX)p. 65
4.6 Concluding Remarksp. 65
Referencesp. 65
Part II Modellingp. 67
5 Propagation Modellingp. 69
5.1 Radio channels in wideband CDMA systemsp. 69
5.1.1 Electromagnetic wave propagationp. 69
5.1.2 Wideband radio channel characterisationp. 73
5.1.3 Introduction to deterministic methods in modelling WCDMA systemsp. 75
5.1.4 Deterministic methods: comparison of performancep. 79
5.2 Application of empirical and deterministic models in picocell planningp. 80
5.2.1 Techniques for indoor modellingp. 80
5.2.2 Techniques for outdoor-to-indoor modellingp. 82
5.3 Application of empirical and deterministic models in microcell planningp. 84
5.3.1 Cost 231 Walfisch-Ikegami modelp. 85
5.3.2 Manhattan modelp. 87
5.3.3 Other microcellular propagation modelsp. 88
5.4 Application of empirical and deterministic models in macrocell planningp. 90
5.4.1 Modified Hatap. 90
5.4.2 Other modelsp. 91
5.5 Propagation models of interfering signalsp. 94
5.5.1 ITU-R 1546 modelp. 94
5.5.2 ITU-R 452 modelp. 100
5.5.3 Statistics in the Modified Hata modelp. 104
5.6 Radio propagation model calibrationp. 105
5.6.1 Tuning algorithmsp. 106
5.6.2 Single and multiple slope approachesp. 108
Appendix Calculation of inverse complementary cumulative normal distribution functionp. 110
Referencesp. 111
6 Theoretical Models for UMTS Radio Networksp. 115
6.1 Antenna modellingp. 115
6.1.1 Mobile terminal antenna modellingp. 117
6.1.2 Base station antenna modellingp. 118
6.2 Link level modelp. 122
6.2.1 Relation to other modelsp. 123
6.2.2 Link level simulation chainp. 124
6.2.3 Link level receiver componentsp. 126
6.2.4 Link level receiver detectorsp. 128
6.3 Capacity considerationsp. 134
6.3.1 Capacity of a single cell systemp. 134
6.3.2 Downlink power-limited capacityp. 134
6.3.3 Uplink power-limited capacityp. 137
6.4 Static system level modelp. 139
6.4.1 Link level aspectsp. 140
6.4.2 Propagation datap. 141
6.4.3 Equipment modellingp. 142
6.4.4 Transmit powers and power controlp. 144
6.4.5 Services and user-specific propertiesp. 146
6.4.6 Soft handoverp. 147
6.4.7 Complete modelp. 148
6.4.8 Applications of a static system-level network modelp. 149
6.4.9 Power control at cell levelp. 152
6.4.10 Equation system solvingp. 157
6.5 Dynamic system level modelp. 161
6.5.1 Similarities and differences between static and dynamic modelsp. 161
6.5.2 Generic system modelp. 162
6.5.3 Input/output parametersp. 164
6.5.4 Mobility modelsp. 164
6.5.5 Traffic modelsp. 165
6.5.6 Path loss modelsp. 167
6.5.7 Shadowing modelsp. 168
6.5.8 Modelling of small scale fadingp. 169
6.5.9 SIR calculalionp. 170
Referencesp. 172
7 Business Modelling Goals and Methodsp. 177
7.1 Business modelling goalsp. 177
7.1.1 New business planningp. 177
7.1.2 Infrastructure developmentp. 178
7.1.3 Budgetingp. 179
7.2 Business modelling methodsp. 179
7.2.1 Trends and statistical approachp. 180
7.2.2 Benchmarking and driversp. 181
7.2.3 Detailed quantitative modelsp. 181
7.2.4 Other non-quantitative methodsp. 182
Referencesp. 183
Part III Planninp. 185
8 Fundamentals of Business Planning for Mobile Networksp. 187
8.1 Process descriptionp. 187
8.1.1 Market analysis and forecastingp. 187
8.1.2 Modelling the systemp. 189
8.1.3 Financial issuesp. 190
8.1.4 Recommendationsp. 190
8.2 Technical investment calculationp. 191
8.2.1 CAPEX calculation methodsp. 191
8.2.2 OPEX calculation methodsp. 196
8.2.3 The role of drivers: Sanity checkingp. 197
8.3 Revenue and non-technical related investment calculationp. 198
8.3.1 Input parameters and assumptionsp. 198
8.3.2 Revenue calculation methodsp. 199
8.3.3 Non-technical related investmentsp. 199
8.4 Business planning resultsp. 199
8.4.1 Business plan output parametersp. 200
8.4.2 Business plan assessment methodsp. 200
Referencesp. 201
9 Fundamentals of Network Characteristicsp. 203
9.1 Power characteristics estimationp. 203
9.1.1 Distance to home base station dependencyp. 203
9.1.2 Traffic load dependencyp. 207
9.2 Network capacity considerationsp. 210
9.2.1 Irregular base station distribution gridp. 210
9.2.2 Improper antenna azimuth arrangementp. 212
9.3 Required minimum network size for calculationsp. 214
Referencesp. 218
10 Fundamentals of Practical Radio Access Network Designp. 219
10.1 Introductionp. 219
10.2 Input parametersp. 222
10.2.1 Base station classificationp. 222
10.2.2 Hardware parametersp. 222
10.2.3 Environmental specificsp. 229
10.2.4 Technology essentialsp. 231
10.3 Network dimensioningp. 238
10.3.1 Coverage versus capacityp. 238
10.3.2 Cell coveragep. 239
10.3.3 Cell Erlang capacityp. 249
10.4 Detailed network planningp. 251
10.4.1 Site-to-sile distance and antenna heightp. 252
10.4.2 Site locationp. 254
10.4.3 Sectorisationp. 256
10.4.4 Antenna and sector directionp. 259
10.4.5 Electrical and mechanical tiltp. 260
10.4.6 Temporal aspects in HCSp. 263
Referencesp. 268
11 Compatibility of UMTS Systemsp. 271
11.3 Scenarios of interferencep. 272
11.1.1 Interference between UMTS and other systemsp. 272
11.1.2 Intra-system interferencep. 274
11.2 Approaches to compatibility calculationsp. 275
11.2.1 Principles of compatibility calculationsp. 275
11.2.2 Minimum Coupling Loss (MCL) methodp. 280
11.2.3 Monte Carlo (MC) methodp. 283
11.2.4 Propagation models for compatibility calculationsp. 284
11.2.5 Characteristics of UTRA stations for the compatibility calculationsp. 286
11.3 Internal electromagnetic compatibilityp. 286
11.4 External electromagnetic compatibilityp. 292
11.4.1 UMTS TDD versus DECT WLLp. 292
11.4.2 Compatibility between UMTS and Radio Astronomy Servicep. 294
11.4.3 Compatibility between UMTS and MMDSp. 295
11.5 Intemational cross-border coordinationp. 296
11.5.1 Principles of coordinationp. 296
11.5.2 Propagation models for coordination calculationsp. 297
11.5.3 Application of preferential frequenciesp. 298
11.5.4 Use of preferential codesp. 300
11.5.5 Examples of coordination agreementsp. 301
Referencesp. 305
12 Network Design - Specialised Aspectsp. 309
12.1 Network infrastructure sharingp. 309
12.1.1 Network sharing methodsp. 309
12.1.2 Legal aspectsp. 313
12.1.3 Drivers for sharingp. 314
12.2 Adjacent channel interference controlp. 315
12.3 Fundamentals of Ultra High Site deploymentp. 318
Referencesp. 320
Part IV Optimisationp. 321
13 Introduction to Optimisation of the UMTS Radio Networkp. 323
13.1 Automation of radio network optimisationp. 324
13.2 What should be optimised and why?p. 325
13.3 How do we benchmark the optimisation results?p. 326
13.3.1 Location based informationp. 327
13.3.2 Sectors and network statistical datap. 328
13.3.3 Cost and optimisation effortsp. 330
Referencesp. 331
14 Theory of Automated Network Optimisationp. 333
14.1 Introductionp. 333
14.1.1 From practice to optimisation modelsp. 334
14.1.2 Optimisation techniquesp. 335
14.2 Optimisation parameters for static modelsp. 339
14.2.1 Site location and configurationp. 340
14.2.2 Antenna related parameterp. 340
14.2.3 CPICH powerp. 344
14.3 Optimisation targets and objective functionp. 345
14.3.1 Coveragep. 345
14.3.2 Capacityp. 346
14.3.3 Soft handover areas and pilot pollutionp. 247
14.3.4 Cost of implementationp. 348
14.3.5 Combination and further possibilitiesp. 348
14.3.6 Additional practical and technical constraintsp. 348
14.3.7 Example of objective function propertiesp. 349
14.4 Network optimisation with evolutionary algorithmsp. 354
14.4.1 Genetic algorithmsp. 355
14.4.2 Evolution strategiesp. 357
14.4.3 Practical implementation of GA for tilt and CPICHp. 361
14.5 Optimisation without simulationp. 366
14.5.1 Geometry-based configuration methodsp. 355
14.5.2 Coverage-driven approachesp. 368
14.5.3 Advanced modelsp. 369
14.5.4 Expected coupling matricesp. 372
14.6 Comparison and suitability of algorithmsp. 373
14.6.1 General strategiesp. 374
14.6.2 Discussion of methodsp. 374
14.6.3 Combination of methodsp. 375
Referencesp. 375
15 Automatic Network Designp. 379
15.1 The key challenges in UMTS network optimisationp. 379
15.1.1 Problem definitionp. 379
15.1.2 Matching UMTS coverage to GSMp. 380
15.1.3 Supporting high bit rate data servicesp. 381
15.1.4 Handling dual technology networksp. 382
15.2 Engineering case studies for network optimisationp. 382
15.2.1 Example network descriptionp. 383
15.2.2 Pre-launched (unloaded) network optimisationp. 383
15.2.3 Loaded network optimisationp. 389
15.3 Case study: optimising base station location and parametersp. 395
15.5.1 Data settingp. 396
15.3.2 Optimisation approachp. 397
15.3.3 Resultsp. 399
15.3.4 Conclusionsp. 402
Referencesp. 403
16 Auto-tuning of RRM Parameters in UMTS Networksp. 405
16.1 Introductionp. 405
16.2 Radio resource management for controlling network qualityp. 406
16.3 Auto-tuning of RRM parametersp. 408
16.3.1 Parameter selection for auto-tuningp. 408
16.3.2 Target selection for auto-tuningp. 410
16.3.3 Fuzzy logic controllers (PLC)p. 410
16.3.4 Case study: Auto-tuning of macrodiversityp. 412
16.4 Optimisation strategies of the auto-tuning processp. 415
16.4.1 Off-line optimisation using Particle Swarm approachp. 416
16.4.2 On-line optimisation using reinforcement learningp. 421
16.5 Conclusionsp. 425
Acknowledgementp. 425
Referencesp. 425
17 UTRAN Transmission Infrastructure Planning and Optimisationp. 427
17.1 Introductionp. 427
17.1.1 Short UTRAN overviewp. 428
17.1.2 Requirements for UTRAN transmission infrastructurep. 428
17.2 Protocol solutions for UTRAN transmission infrastructurep. 430
17.2.1 Main considerations for ATM layer protocols in current 3G networksp. 430
17.2.2 MPLS-architecture for future 3G transmissionsp. 443
17.2.3 The path to direct IP transmission networkingp. 444
17.3 End-to-end transmission dimensioning approachp. 446
17.3.1 Dimensioning of Node B throughputp. 446
17.3.2 Traffic dimensioning of the ATM networkp. 451
17.3.3 Traffic dimensioning of the IP-Networkp. 452
17.4 Network solutions for UTRAN transmission infrastructurep. 456
17.4.1 Leased linesp. 456
17.4.2 Point-to-point systemsp. 457
17.4.3 Point-to-multipoint systems - LMDSp. 460
17.4.4 WiMAX as a potential UTRAN backhaul solutionp. 468
17.5 Efficient use of WiMAX in UTRANp. 472
17.5.1 Dimensioning of WiMAX for UTRAN infrastructurep. 472
17.5.2 Current WiMAX limitationsp. 473
17.6 Cost-effective radio solution for UTRAN infrastructurep. 474
17.6.1 RF planning aspectsp. 474
17.6.2 Throughput dimensioningp. 475
17.6.3 Methods of finding optimal LMDS network configurationsp. 476
17.6.4 Costs evaluation of UTRAN infrastructure - software examplep. 485
17.6.5 Example calculations and comparison of resultsp. 487
Referencesp. 493
Concluding Remarksp. 497
Indexp. 501
Go to:Top of Page