Skip to:Content
|
Bottom
Cover image for Multidimensional liquid chromatography : theory and applications in industrial chemistry and the life sciences
Title:
Multidimensional liquid chromatography : theory and applications in industrial chemistry and the life sciences
Publication Information:
Hoboken, NJ : John Wiley, 2008
Physical Description:
xx, 456 p. : ill. ; 24 cm.
ISBN:
9780471738473

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010170101 QD79.C454 M84 2008 Open Access Book Book
Searching...

On Order

Summary

Summary

Multidimensional Liquid Chromatography (MDLC) is a very powerful separation technique for analyzing exceptionally complex samples in one step. This authoritative reference presents a number of recent contributions that help define the current art and science of MDLC. Topics covered include instrumentation, theory, methods development, and applications of MDLC in the life sciences and in industrial chemistry. With the information to help you perform very difficult separations of complex samples, this reference includes chapters contributed by leading experts or teams of experts.


Author Notes

Steven A. Cohen, PhD, is Life Sciences Director, RDE of the Proteomics Technology Group at the Waters Corporation in Milford, Massachusetts.

MARK R. SCHURE, PhD, is Technical Director of the Computational Chemistry Group and Technical Director of the Theoretical Separation Science Laboratory at the Rohm and Haas Company in Springhouse, Pennsylvania.


Table of Contents

Forewordp. xiii
Prefacep. xv
Contributorsp. xvii
1 Introductionp. 1
1.1 Previous Literature Which Covers MDLCp. 4
1.2 How this Book is Organizedp. 5
Referencesp. 6
Part I Theoryp. 9
2 Elements of the Theory of Multidimensional Liquid Chromatographyp. 11
2.1 Introductionp. 11
2.2 Peak Capacityp. 13
2.3 Resolutionp. 17
2.4 Orthogonalityp. 19
2.5 Two-Dimensional Theory of Peak Overlapp. 21
2.6 Dimensionality, Peak Ordering, and Clusteringp. 23
2.7 Theory of Zone Samplingp. 24
2.8 Dilution and Limit of Detectionp. 26
2.9 Chemometric Analysisp. 27
2.10 Future Directionsp. 28
Referencesp. 30
3 Peak Capacity in Two-Dimensional Liquid Chromatographyp. 35
3.1 Introductionp. 35
3.2 Theoryp. 37
3.3 Proceduresp. 41
3.4 Results and Discussionp. 42
3.5 Conclusionsp. 49
Appendix 3A Generation of Random Correlated Coordinatesp. 50
Appendix 3B Derivation of Limiting Correlation Coefficient rp. 54
Referencesp. 56
4 Decoding Complex 2D Separationsp. 59
4.1 Introductionp. 59
4.2 Fundamentals: The Statistical Description of Complex Multicomponent Separationsp. 62
4.3 Decoding 1D and 2D Multicomponent Separations by Using the SMO Poisson Statisticsp. 68
4.4 Decoding Multicomponent Separations by the Autocovariance Functionp. 74
4.5 Application to 2D Separationsp. 78
4.5.1 Results from SMO Methodp. 81
4.5.2 Results from 2D Autocovariance Function Methodp. 84
4.6 Concluding Remarksp. 88
Acknowledgmentsp. 88
Referencesp. 88
Part II Columns, Instrumentation and Methods Developmentp. 91
5 Instrumentation for Comprehensive Multidimensional Liquid Chromatographyp. 93
5.1 Introductionp. 93
5.2 Heart-Cutting Versus Comprehensive Modep. 95
5.3 Chromatographic Hardwarep. 97
5.3.1 Valvesp. 97
5.4 CE Interfacesp. 104
5.4.1 Gated Interface for HPLC-CEp. 104
5.4.2 Microfluidic Valves for On-Chip Multidimensional Analysisp. 105
5.5 Columns and Combinationsp. 106
5.5.1 Column Systems, Dilution, and Splittingp. 108
5.6 Detectionp. 109
5.7 Computer Hardware and Softwarep. 109
5.7.1 Software Developmentp. 110
5.7.2 Valve Sequencingp. 111
5.7.3 Data Format and Storagep. 113
5.8 Zone Visualizationp. 115
5.8.1 Contour Visualizationp. 115
5.8.2 2D Peak Presentationp. 117
5.8.3 Zone Visualization in Specific Chemical (pI) Regionsp. 117
5.8.4 External Plotting Programsp. 117
5.8.5 Difference Plotsp. 118
5.8.6 Multi-channel Datap. 118
5.9 Data Analysis and Signal Processingp. 119
5.10 Future Prospectsp. 120
Referencesp. 121
6 Method Development in Comprehensive Multidimensional Liquid Chromatographyp. 127
6.1 Introductionp. 127
6.2 Previous Workp. 128
6.3 Column Variablesp. 130
6.4 Method Developmentp. 130
6.4.1 The Cardinal Rules of 2DLC Method Developmentp. 132
6.5 Planning the Experimentp. 143
6.6 General Comments on Optimizing the 2DLC Experiment: Speed-Resolution Trade-offp. 143
Acknowledgmentp. 144
Referencesp. 144
7 Monolithic Columns and Their 2D-HPLC Applicationsp. 147
7.1 Introductionp. 147
7.2 Monolithic Polymer Columnsp. 148
7.2.1 Structural Properties of Polymer Monolithsp. 148
7.2.2 Chromatographic Properties of Polymer Monolithic Columnsp. 150
7.2.3 Two-Dimensional HPLC Using Polymer Monolithsp. 152
7.3 Monolithic Silica Columnsp. 153
7.3.1 Preparationp. 154
7.3.2 Structural Properties of Monolithic Silica Columnsp. 154
7.3.3 Chromatographic Properties of Monolithic Silica Columnsp. 156
7.4 Peak Capacity Increase by Using Monolithic Silica Columns in Gradient Elutionp. 158
7.5 2D HPLC Using Monolithic Silica Columnsp. 159
7.5.1 RP-RP 2D HPLC Using Two Different Columnsp. 161
7.5.2 RP-RP 2D HPLC Using Two Similar Columnsp. 164
7.5.3 Ion Exchange-Reversed-Phase 2D HPLC Using a Monolithic Column for the 2nd-Dp. 166
7.5.4 IEX-RP 2D HPLC Using a Monolithic RP Capillary Column for the 2nd-Dp. 168
7.6 Summary and Future Improvement of 2D HPLCp. 171
Referencesp. 171
8 Ultrahigh Pressure Multidimensional Liquid Chromatographyp. 177
8.1 Background: MDLC in the Jorgenson Labp. 177
8.1.1 Cation Exchange-Size Exclusionp. 178
8.1.2 Anion Exchange-Reversed Phasep. 180
8.1.3 Cation Exchange-Reversed Phasep. 181
8.1.4 Size Exclusion-Reversed Phasep. 183
8.2 Online Versus Off-Line MDLCp. 188
8.3 MDLC Using Ultrahigh Pressure Liquid Chromatography: Benefits and Challengesp. 189
8.3.1 An Introduction to UHPLCp. 190
8.3.2 UHPLC for LC x LC: High Speed Versus High Peak Capacityp. 191
8.3.3 LC x UHPLC for Separations of Intact Proteinsp. 191
8.4 Experimental Detailsp. 193
8.4.1 Instrumentationp. 193
8.4.2 Data Analysisp. 194
8.4.3 Chromatographic Conditionsp. 195
8.4.4 Samplesp. 196
8.5 Results and Discussionp. 196
8.6 Future Directions for UHP-MDLCp. 202
Referencesp. 203
Part III Life Science Applicationsp. 205
9 Peptidomicsp. 207
9.1 State of the Art-Why Peptidomics?p. 207
9.2 Strategies and Solutionsp. 208
9.3 Summary and Conclusionsp. 218
Referencesp. 218
10 A Two-Dimensional Liquid Mass Mapping Technique for Biomarker Discoveryp. 221
10.1 Introductionp. 221
10.2 Methods for Separating and Identifying Proteinsp. 223
10.2.1 pI-Based Methods of Separationp. 223
10.2.2 Chromatofocusing-A Column Based pH Separationp. 225
10.2.3 Nonporous Separation of Proteinsp. 226
10.2.4 Electrospray-Time of Flight-Mass Spectrometryp. 228
10.2.5 MALDI Peptide Mass Fingerprintingp. 229
10.2.6 Data Analysis and Recombinationp. 230
10.3 Applicationsp. 230
10.3.1 Proteomic Mapping and Clustering of Multiple Samples-Application to Ovarian Cancer Cell Linesp. 230
10.3.2 2D Liquid Mass Mapping of Tumor Cell Line Secreted Samples, Application to Metastasis-Associated Protein Profilesp. 233
10.3.3 Identification Annotation and Data Correlation in MCF10 Human Breast Cancer Cell Linesp. 235
10.4 Summary and Conclusionsp. 237
Acknowledgmentsp. 238
Referencesp. 238
11 Coupled Multidimensional Chromatography and Tandem Mass Spectrometry Systems for Complex Peptide Mixture Analysisp. 243
11.1 SCX-RP/MS/MSp. 245
11.2 SCX/RP/MS/MSp. 248
11.3 MudPITp. 251
11.4 Alternative First Dimension Approachesp. 254
11.5 Conclusionp. 255
Referencesp. 255
12 Development of Orthogonal 2DLC Methods for Separation of Peptidesp. 261
12.1 Introductionp. 261
12.2 Previous Workp. 263
12.3 Developing Orthogonal 2DLC Methodsp. 264
12.3.1 LC Selectivity for Peptides: Experimental Designp. 264
12.3.2 Investigation of 2DLC Orthogonality for Separation of Peptidesp. 266
12.3.3 Geometric Approach to Orthogonality in 2DLCp. 271
12.3.4 Practical 2DLC Considerations in Proteome Researchp. 275
12.3.5 Evaluation of Selected 2DLC MS/MS Systemsp. 276
12.3.6 Peak Capacity in 2DLC-MS/MSp. 280
12.3.7 Considerations of Concentration Dynamic Rangep. 282
12.4 Conclusionsp. 284
Acknowledgmentp. 284
Referencesp. 284
13 Multidimensional Separation of Proteins with Online Electrospray Time-of-Flight Mass Spectrometric Detectionp. 291
13.1 Introductionp. 291
13.2 Chromatographic Parametersp. 293
13.3 Analyte Detection and Subsequent Analysisp. 293
13.4 Building a Multidimensional Protein Separationp. 294
13.4.1 Selection of an Ion-Exchange-Reversed-Phase Separation System for Protein-Level Separationsp. 295
13.4.2 Chromatographic Sorbent Considerationsp. 295
13.4.3 Chromatographic Behavior of Proteinsp. 296
13.5 Comprehensive Multidimensional Chromatographic Systemsp. 296
13.6 Coupling 2DLC with Online ESI-MS Detectionp. 299
13.6.1 Interactions between the Two Dimensions of Chromatography (Step Vs. Linear)p. 304
13.6.2 Recognizing Increased Selectivity in 2DLC Separationsp. 306
13.7 Expanding Multidimensional Separations into a "Middle-Out" Approach to Proteomic Analysisp. 308
13.8 Future Directions in Protein MDLCp. 311
13.8.1 Protein Chromatographyp. 312
13.8.2 MS Analysis of Proteinsp. 313
13.8.3 Data Interpretationp. 314
13.9 Conclusionp. 314
Referencesp. 315
14 Analysis of Enantiomeric Compounds Using Multidimensional Liquid Chromatographyp. 319
14.1 Online Achiral-Chiral LC-LCp. 320
14.2 Applicationsp. 323
14.2.1 Analysis of Enantiomers in Plasma and Urinep. 323
14.3 Amino Acidsp. 328
14.3.1 Physiological Fluids or Tissuesp. 328
14.3.2 In Food, Beverages, and Other Productsp. 333
14.4 Other Applicationsp. 334
14.4.1 Analysis of Enantiomers from Plant and Environmental Sourcesp. 334
14.5 Miscellaneous Applicationsp. 336
14.6 Conclusionp. 338
Referencesp. 339
Part IV Multidimensional Separation Using Capillary Electrophoresisp. 345
15 Two-Dimensional Capillary Electrophoresis for the Comprehensive Analysis of Complex Protein Mixturesp. 347
15.1 Introductionp. 347
15.2 Previous Workp. 348
15.2.1 Miniaturized IEF/SDS-PAGEp. 348
15.2.2 One-Dimensional Capillary Electrophoresis for Protein Analysisp. 349
15.3 Two-Dimensional Capillary Separations for Analysis of Peptides and Proteinsp. 352
15.3.1 Capillary Liquid Chromatography Coupled with Capillary Electrophoresis for Analysis of Unlabeled Peptides and Proteinsp. 352
15.3.2 Two-Dimensional Capillary Electrophoresis for Analysis of Proteinsp. 352
15.3.3 High-Speed Two-Dimensional Capillary Electrophoresisp. 356
15.3.4 The Analysis of a Single Fixed Cellp. 358
15.4 Conclusionsp. 360
15.5 Abbreviationsp. 360
Referencesp. 360
16 Two-Dimensional HPLC-CE Methods for Protein/Peptide Separationp. 365
16.1 Introductionp. 365
16.2 Off-line Versus Onlinep. 366
16.3 HPLC Fractionationp. 366
16.4 2D HPLC-CEp. 367
16.5 CE-MS Detectionp. 368
16.6 Applicationsp. 370
16.7 Concluding Remarksp. 380
Acknowledgmentp. 381
Referencesp. 381
Part V Industrial Applicationsp. 385
17 Multidimensional Liquid Chromatography in Industrial Applicationsp. 387
17.1 Introductionp. 387
17.2 Principles of Multidimensional Liquid Chromatography as Applied to Polymer Analysisp. 390
17.3 Experimentalp. 393
17.4 Analysis of Alkylene Oxide-Based Polymersp. 395
17.4.1 Amphiphilic Polyalkylene Oxidesp. 395
17.5 Excipientsp. 399
17.6 Polyether Polyolsp. 403
17.7 Analysis of Condensation Polymersp. 406
17.8 Polyamidesp. 407
17.9 Aromatic Polyestersp. 414
17.10 Aliphatic Polyestersp. 417
Referencesp. 420
18 The Analysis of Surfactants by Multidimensional Liquid Chromatographyp. 425
18.1 Introductionp. 425
18.2 Analytical Characterization Methodsp. 428
18.2.1 CE and CGEp. 429
18.2.2 SECp. 430
18.2.3 NPLCp. 431
18.2.4 RPLCp. 433
18.3 Detection Methodsp. 434
18.4 2DLCp. 434
18.4.1 RPLC Coupled to SECp. 435
18.4.2 NPLC Coupled to RPLCp. 435
18.5 Conclusionsp. 442
Referencesp. 443
Indexp. 447
Go to:Top of Page