Skip to:Content
|
Bottom
Cover image for Parabolic equation methods for electromagnetic wave propagation
Title:
Parabolic equation methods for electromagnetic wave propagation
Personal Author:
Series:
IEE electromagnetic waves series ; 45
Publication Information:
United Kingdom : The Institution of Electrical Engineers, 2000
ISBN:
9780852967645
Added Corporate Author:

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010099190 QC973.4.T76 L48 2000 Open Access Book Book
Searching...

On Order

Summary

Summary

This book is the first to present the application of parabolic equation methods in electromagnetic wave propagation. These powerful numerical techniques have become the dominant tool for assessing clear-air and terrain effects on radiowave propagation and are growing increasingly popular for solving scattering problems.

The book gives the mathematical background to parabolic equation modelling and describes simple parabolic equation algorithms before progressing to more advanced topics such as domain truncation, the treatment of impedance boundaries and the implementation of very fast hybrid methods combining ray-tracing and parabolic equation techniques. The last three chapters are devoted to scattering problems, with application to propagation in urban environments and to radar cross section computation.

This book will prove useful to scientists and engineers who require accurate assessment of diffraction and ducting on radio and radar systems. Its self-contained approach should also make it particularly suitable for graduate students and other researchers interested in radiowave propagation scattering.

self-contained approach should also make it particularly suitable for graduate students and other researchers interested in radiowave propagation scattering.self-contained approach should also make it particularly suitable for graduate students and other researchers interested in radiowave propagation scattering.self-contained approach should also make it particularly suitable for graduate students and other researchers interested in radiowave propagation scattering.


Author Notes

Mireille Levy holds a PhD in mathematics from the Paris University Pierre et Marie Curie. She is the head of the modelling group at the Radio Communications Research Unit of the Rutherford Appleton Laboratory


Table of Contents

Prefacep. xi
1 Introductionp. 1
2 Parabolic equation frameworkp. 4
2.1 Introductionp. 4
2.2 Basic derivationp. 5
2.2.1 Paraxial wave equationp. 5
2.2.2 Cylindrical coordinatesp. 9
2.3 Approximations of the square-root operatorp. 10
2.3.1 The standard parabolic equationp. 10
2.3.2 Overview of wide-angle schemesp. 11
2.4 Propagation in vacuump. 12
2.4.1 Angular spectrump. 12
2.4.2 SPE in vacuump. 14
2.4.3 Square-root operatorp. 16
2.5 Analogy with Fresnel-Kirchhoff diffractionp. 17
3 Parabolic equation algorithmsp. 20
3.1 Introductionp. 20
3.2 Split-step formulation of the SPEp. 21
3.2.1 The range-independent casep. 21
3.2.2 Range dependencep. 23
3.2.3 Implementation of operatorsp. 24
3.3 Split-step sine transform solutionp. 24
3.3.1 Waveguides: discrete sine transform solutionp. 27
3.3.2 Discretization of the infinite problemp. 29
3.3.3 Sampling and domain truncationp. 31
3.4 Wide-angle split-step algorithmp. 32
3.5 Finite-difference methodsp. 35
3.5.1 Narrow-angle codep. 37
3.5.2 Claerbout approximationp. 39
3.6 Source modellingp. 40
4 Tropospheric radiowave propagationp. 42
4.1 Introductionp. 42
4.2 Radio refractive indexp. 42
4.2.1 Atmospheric absorptionp. 45
4.3 Wave equations for radiowave propagationp. 46
4.3.1 Boundary conditionsp. 52
4.4 Earth flattening transformationp. 53
4.5 Two-dimensional wave equation summaryp. 57
4.6 PE for tropospheric radiowave propagationp. 58
4.7 Path lossp. 58
4.8 Aperture fieldp. 61
5 Rays and modesp. 63
5.1 Introductionp. 63
5.2 Ray-tracingp. 64
5.2.1 Basic principlesp. 64
5.2.2 Piecewise linear profilesp. 67
5.3 Mode theoryp. 69
5.3.1 Basic principlesp. 69
5.3.2 Piecewise linear profilesp. 73
6 Oversea propagationp. 77
6.1 Introductionp. 77
6.2 Evaporation ductsp. 77
6.3 Bilinear and trilinear profilesp. 83
6.4 Range dependencep. 85
6.5 Measured refractivity datap. 88
6.6 Atmospheric absorptionp. 92
7 Irregular terrain modellingp. 95
7.1 Introductionp. 95
7.2 Terrain modelsp. 96
7.2.1 Staircase terrain modellingp. 96
7.2.2 Piecewise linear terrainp. 97
7.2.3 Conformal mappingp. 100
7.3 Finite-difference implementationp. 102
7.4 Examplesp. 103
7.4.1 Diffraction by the Earthp. 103
7.4.2 Multiple knife-edge diffractionp. 104
7.4.3 Combined effects of terrain and ductingp. 111
8 Domain truncationp. 115
8.1 Introductionp. 115
8.2 Absorbing layersp. 116
8.3 Perfectly matched layerp. 118
8.4 Non-local boundary conditionsp. 120
8.5 Diffractive non-local boundary conditionsp. 121
8.5.1 Homogeneous mediump. 121
8.5.2 Linear mediump. 122
8.5.3 Implementationp. 125
8.5.4 Examplesp. 128
8.6 Transmitting NLBCsp. 131
8.6.1 High antennas in linear mediap. 133
8.6.2 Elevated duct examplep. 134
8.7 Split-step incoming energy PEp. 136
9 Impedance boundary modellingp. 141
9.1 Introductionp. 141
9.2 Boundary conditions at a horizontal interfacep. 142
9.2.1 Leontovich boundary conditionsp. 145
9.2.2 Small angle GIBCp. 147
9.2.3 Reflection coefficientp. 148
9.3 Finite-difference implementationp. 149
9.4 Mixed Fourier transformp. 150
9.4.1 Continuous mixed Fourier transformp. 150
9.4.2 Discrete mixed Fourier transformp. 152
9.5 Examplesp. 158
9.5.1 Line-of-sight propagationp. 158
9.5.2 Surface wavep. 158
9.5.3 Recovery effectp. 160
10 Propagation over the rough sea surfacep. 162
10.1 Introductionp. 162
10.2 Random rough surfacesp. 163
10.3 Sea surface spectrump. 163
10.4 Surface roughness and specular reflectionp. 164
10.5 HF propagation over the rough seap. 165
10.5.1 Small perturbation methodp. 165
10.5.2 Propagation at 10 MHzp. 166
10.6 Ducting propagation over the rough sea surfacep. 167
10.6.1 Roughness reduction factorp. 167
10.6.2 Estimation of grazing anglesp. 170
10.6.3 Surface duct propagationp. 171
11 Hybrid methodsp. 175
11.1 Introductionp. 175
11.2 Radio Physical Opticsp. 176
11.3 Horizontal PEp. 179
11.3.1 Homogeneous mediump. 182
11.3.2 Linear mediump. 183
11.3.3 Spectral decomposition and numerical performancep. 184
11.3.4 Examplesp. 186
11.4 High antennasp. 188
11.5 Earth-space pathsp. 192
12 Two-dimensional scatteringp. 199
12.1 Introductionp. 199
12.2 Pade schemesp. 201
12.2.1 Pade-(1,1) schemep. 205
12.2.2 Pade-(1,0) schemep. 207
12.2.3 Pade-(2,1) schemep. 211
12.3 Split-step Pade methodp. 214
12.4 Wide-angle NLBCsp. 218
12.4.1 Split-step Pade implementationp. 222
12.5 Modelling the scattered fieldp. 224
12.5.1 Reflecting facet modelp. 224
12.5.2 Rotating PE methodp. 225
12.5.3 Boundary conditionsp. 227
12.5.4 Initial fieldp. 228
12.5.5 Numerical implementationp. 228
12.5.6 Near-field/far-field considerationsp. 229
12.6 Examplesp. 230
12.6.1 Cylindersp. 230
12.6.2 L-shaped objectp. 232
12.6.3 2D aircraft shapep. 233
13 Three-dimensional scattering for the scalar wave equationp. 237
13.1 Introductionp. 237
13.2 Axial symmetry parabolic equationp. 238
13.2.1 Domain truncationp. 239
13.3 Application to X-ray opticsp. 242
13.4 General 3D casep. 248
13.4.1 Implementation of the 3D Pade-(1,0) schemep. 253
13.4.2 Double pass methodp. 256
13.5 Rough surface modellingp. 257
13.6 Building scatterp. 260
13.6.1 Normal incidencep. 260
13.6.2 Oblique incidencep. 261
13.6.3 Millimetre-wave building scatterp. 261
14 Vector PEp. 267
14.1 Introductionp. 267
14.2 Vector PE frameworkp. 267
14.3 Implementation aspectsp. 271
14.4 Examplesp. 271
14.4.1 Bistatic scattering geometryp. 271
14.4.2 Circular cylinderp. 272
14.4.3 Spheresp. 273
14.4.4 NASA almondp. 278
14.4.5 F117 aircraftp. 279
Appendix A Airy functionsp. 283
A.1 The Airy differential equationp. 283
A.2 Zeros of the Airy functionp. 284
Appendix B Far-field expressionsp. 287
B.1 Two-dimensional casep. 287
B.1.1 Far-field formulationp. 288
B.1.2 Near-field/far-field transformationp. 289
B.1.3 Bistatic RCSp. 291
B.2 Three-dimensional casep. 291
B.2.1 Far-field formulationp. 292
B.2.2 Near-field/far-field transformationp. 293
B.2.3 Bistatic RCSp. 293
Appendix C Theoretical derivation of mode seriesp. 294
C.1 Introductionp. 294
C.2 Modes for linear profilesp. 295
C.3 Functional analysis frameworkp. 297
C.3.1 Complex heightsp. 297
C.3.2 The resolvent of Tp. 298
C.4 Mode expansions for the linear casep. 300
C.4.1 The self-adjoint casep. 300
C.4.2 Connecting the solutionp. 303
C.4.3 Finite impedance casep. 304
C.5 Perturbations of the linear casep. 310
Appendix D Energy conservationp. 314
D.1 Two-dimensional problemsp. 314
D.2 Three-dimensional problemsp. 317
D.3 Unicity of PE solutionsp. 318
Bibliographyp. 319
Indexp. 333
Go to:Top of Page