Skip to:Content
|
Bottom
Cover image for Modern power systems analysis
Title:
Modern power systems analysis
Personal Author:
Publication Information:
New York : Springer, 2008
Physical Description:
xi, 559 p. ; 24 cm.
ISBN:
9780387728520

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010193128 TK1001 W36 2008 Open Access Book Book
Searching...

On Order

Summary

Summary

The capability of effectively analyzing complex systems is fundamental to the operation, management and planning of power systems. This book offers broad coverage of essential power system concepts and features a complete and in-depth account of all the latest developments, including Power Flow Analysis in Market Environment; Power Flow Calculation of AC/DC Interconnected Systems and Power Flow Control and Calculation for Systems Having FACTS Devices and recent results in system stability.


Table of Contents

1 Mathematical Model and Solution of Electric Networkp. 1
1.1 Introductionp. 1
1.2 Basic Conceptsp. 2
1.2.1 Node Equation and Loop Equationp. 2
1.2.2 Equivalent Circuit of Transformer and Phase Shift Transformerp. 9
1.3 Nodal Admittance Matrixp. 13
1.3.1 Basic Concept of Nodal Admittance Matrixp. 13
1.3.2 Formulation and Modification of Nodal Admittance Matrixp. 17
1.4 Solution to Electric Network Equationsp. 22
1.4.1 Gauss Elimination Methodp. 22
1.4.2 Triangular Decomposition and Factor Tablep. 27
1.4.3 Sparse Techniquesp. 34
1.4.4 Sparse Vector Methodp. 38
1.4.5 Optimal Ordering Schemes of Electric Network Nodesp. 43
1.5 Nodal Impedance Matrixp. 48
1.5.1 Basic Concept of Nodal Impedance Matrixp. 48
1.5.2 Forming Nodal Impedance Matrix Using Admittance Matrixp. 50
1.5.3 Forming Nodal Impedance Matrix by Branch Addition Methodp. 56
2 Load Flow Analysisp. 71
2.1 Introductionp. 71
2.2 Formulation of Load Flow Problemp. 73
2.2.1 Classification of Node Typesp. 73
2.2.2 Node Power Equationsp. 76
2.3 Load Flow Solution by Newton Methodp. 79
2.3.1 Basic Concept of Newton Methodp. 79
2.3.2 Correction Equationsp. 83
2.3.3 Solution Process of Newton Methodp. 88
2.3.4 Solution of Correction Equationsp. 89
2.4 Fast Decoupled Methodp. 101
2.4.1 Introduction to Fast Decoupled Methodp. 101
2.4.2 Correction Equations of Fast Decoupled methodp. 104
2.4.3 Flowchart of Fast Decoupled Methodp. 107
2.5 Static Security Analysis and Compensation Methodp. 113
2.5.1 Survey of Static Security Analysisp. 113
2.5.2 Compensation Methodp. 114
2.6 DC Load Flow Methodp. 119
2.6.1 Model of DC Load Flowp. 120
2.6.2 Outage Analysis by DC Load Flow Methodp. 122
2.6.3 N-1 Checking and Contingency Ranking Methodp. 123
3 Stochastic Security Analysis of Electrical Power Systemsp. 129
3.1 Introductionp. 129
3.2 Basic Concepts of Probability Theoryp. 130
3.2.1 Probability of Stochastic Eventsp. 130
3.2.2 Random Variables and its Distributionp. 132
3.2.3 Numeral Character of Random Variablep. 133
3.2.4 Convolution of Random Variablesp. 135
3.2.5 Several Usual Random Variable Distributionsp. 136
3.2.6 Markov Processp. 138
3.3 Probabilistic Model of Power Systemsp. 140
3.3.1 Probabilistic Model of Loadp. 140
3.3.2 Probabilistic Model of Power System Componentsp. 141
3.3.3 Outage Table of Power System Componentsp. 142
3.4 Monte Carlo Simulation Methodp. 145
3.4.1 Fundamental Theory of Monte Carlo Simulation Methodp. 145
3.4.2 Sampling of System Operation Statep. 148
3.4.3 State Evaluation Modelp. 150
3.4.4 Indices of Reliability Evaluationp. 151
3.4.5 Flowchart of Composite System Adequacy Evaluationp. 152
3.4.6 Markov Chain Monte Carlo (MCMC) Simulation Methodp. 156
3.5 Probabilistic Load Flow Analysisp. 161
3.5.1 Cumulants of Random Distributionp. 162
3.5.2 Linearization of Load Flow Equationp. 168
3.5.3 Computing Process of Probabilistic Load Flowp. 171
3.6 Probabilistic Network-Flow Analysisp. 178
3.6.1 Introductionp. 178
3.6.2 Network-Flow Modelp. 180
3.6.3 Lower Boundary Points of Feasible Flow Solutionsp. 186
3.6.4 Reliability of Transmission Systemp. 188
4 Power Flow Analysis in Market Environmentp. 193
4.1 Introductionp. 193
4.1.1 Transmission Ownerp. 193
4.1.2 Independent Operatorp. 194
4.1.3 Power Exchangep. 194
4.1.4 Ancillary Servicep. 195
4.1.5 Scheduling Coordinatorp. 195
4.2 Optimal Power Flowp. 196
4.2.1 General Formulation of OPF Problemp. 196
4.2.2 Approaches to OPFp. 198
4.2.3 Interior Point Method (IPM) for OPF Problemp. 202
4.3 Application of Optimal Power Flow in Electricity Marketp. 217
4.3.1 Surveyp. 217
4.3.2 Congestion Management Method Based On OPFp. 223
4.4 Power Flow Tracingp. 228
4.4.1 Current Decomposition Axiomsp. 230
4.4.2 Mathematical Model of Loss Allocationp. 232
4.4.3 Usage Sharing Problem of Transmission Facilitiesp. 234
4.4.4 Methodology of Graph Theoryp. 238
4.5 Available Transfer Capability of Transmission Systemp. 241
4.5.1 Introduction To Available Transfer Capabilityp. 241
4.5.2 Application of Monte Carlo Simulation in ATC Calculationp. 245
4.5.3 ATC Calculation with Sensitivity Analysis Methodp. 246
5 HVDC and FACTSp. 255
5.1 Introductionp. 255
5.2 HVDC Basic Principles and Mathematical Modelsp. 258
5.2.1 HVDC Basic Principlesp. 258
5.2.2 Converter Basic Equations Neglecting Lcp. 261
5.2.3 Converter Basic Equations Considering Lcp. 267
5.2.4 Converter Equivalent Circuitsp. 273
5.2.5 Multiple Bridge Operationp. 276
5.2.6 Converter Controlp. 279
5.3 Power Flow Calculation of AC/DC Interconnected Systemsp. 281
5.3.1 Converter Basic Equations in per Unit Systemp. 282
5.3.2 Power Flow Equationsp. 283
5.3.3 Jacobian Matrix of Power Flow Equationsp. 286
5.3.4 Integrated Iteration formula of AC/DC Interconnected Systemsp. 289
5.3.5 Alternating Iteration for AC/DC Interconnected Systemsp. 294
5.4 HVDC Dynamic Mathematical Modelsp. 299
5.5 Basic Principles and Mathematical Models of FACTSp. 301
5.5.1 Basic Principle and Mathematical Model of SVCp. 302
5.5.2 Basic Principle and Mathematical Model of STATCOMp. 308
5.5.3 Basic Principle and Mathematical Model of TCSCp. 313
5.5.4 Basic Principle and Mathematical Model of SSSCp. 319
5.5.5 Basic Principle and Mathematical Model of TCPSTp. 322
5.5.6 Basic Principle and Mathematical Model of UPFCp. 325
6 Mathematical Model of Synchronous Generator and Loadp. 333
6.1 Introductionp. 333
6.2 Mathematical Model of Synchronous Generatorp. 335
6.2.1 Basic Mathematical Equations of Synchronous Generatorp. 336
6.2.2 Mathematical Equations of Synchronous Generator Using Machine Parametersp. 343
6.2.3 Simplified Mathematical Model of Synchronous Generatorp. 351
6.2.4 Steady-State Equations and Phasor Diagramp. 354
6.2.5 Mathematical Equations Considering Effect of Saturationp. 357
6.2.6 Rotor Motion Equation of Synchronous Generatorp. 360
6.3 Mathematical Model of Generator Excitation Systemsp. 363
6.3.1 Mathematical Model of Exciterp. 365
6.3.2 Voltage Measurement and Load Compensation Unitp. 375
6.3.3 Limitersp. 376
6.3.4 Mathematical Model of Power System Stabilizerp. 377
6.3.5 Mathematical Model of Excitation Systemsp. 377
6.4 Mathematical Model of Prime Mover and Governing Systemp. 381
6.4.1 Mathematical Model of Hydro-Turbine and Governing Systemp. 382
6.4.2 Mathematical Model of Steam Turbine and Governing Systemp. 389
6.5 Mathematical Model of Loadp. 393
6.5.1 Static Load Modelp. 395
6.5.2 Dynamic Load Modelp. 397
7 Power System Transient Stability Analysisp. 405
7.1 Introductionp. 405
7.2 Numerical Methods for Transient Stability Analysisp. 407
7.2.1 Numerical Methods for Ordinary Differential Equationsp. 408
7.2.2 Numerical Methods for Differential-Algebraic Equationsp. 425
7.2.3 General Procedure for Transient Stability Analysisp. 427
7.3 Network Mathematical Model for Transient Stability Analysisp. 430
7.3.1 The Relationship Between Network and Dynamic Devicesp. 431
7.3.2 Modeling Network Switching and Faultsp. 439
7.4 Transient Stability Analysis with Simplified Modelp. 446
7.4.1 Computing Initial Valuesp. 447
7.4.2 Solving Network Equations with Direct Methodp. 448
7.4.3 Solving Differential Equations by Modified Euler Methodp. 450
7.4.4 Numerical Integration Methods for Transient Stability Analysis under Classical Modelp. 457
7.5 Transient Stability Analysis with FACTS Devicesp. 463
7.5.1 Initial Values and Difference Equations of Generatorsp. 464
7.5.2 Initial Values and Difference Equations of FACTS and HVDCp. 475
7.5.3 Forming Network Equationsp. 484
7.5.4 Simultaneous Solution of Difference and Network Equationsp. 487
8 Small-Signal Stability Analysis of Power Systemsp. 489
8.1 Introductionp. 489
8.2 Linearized Equations of Power System Dynamic Componentsp. 493
8.2.1 Linearized Equation of Synchronous Generatorp. 493
8.2.2 Linearized Equation of Loadp. 500
8.2.3 Linearized Equation of FACTS Componentsp. 502
8.2.4 Linearized Equation of HVDC Transmission Systemp. 503
8.3 Steps in Small-Signal Stability Analysisp. 506
8.3.1 Network Equationp. 506
8.3.2 Linearized Differential Equations of Whole Power Systemp. 508
8.3.3 Program Package for Small-Signal Stability Analysisp. 510
8.4 Eigenvalue Problem in Small-Signal Stability Analysisp. 519
8.4.1 Characteristics of State Matrix Given by Its Eigensolutionp. 519
8.4.2 Modal Analysis of Linear Systemsp. 523
8.4.3 Computation of Eigenvaluesp. 526
8.4.4 Eigensolution of Sparse Matrixp. 530
8.4.5 Application of Eigenvalue Sensitivity Analysisp. 533
8.5 Oscillation Analysis of Power Systemsp. 534
Referencesp. 543
Indexp. 555
Go to:Top of Page