Skip to:Content
|
Bottom
Cover image for Low-dimensional semiconductor structures : fundamentals and device applications
Title:
Low-dimensional semiconductor structures : fundamentals and device applications
Publication Information:
Cambridge, UK : Cambridge University Press, 2001
ISBN:
9780521591034

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010126574 QC611.6.S9 L68 2001 Open Access Book Book
Searching...

On Order

Summary

Summary

Low-Dimensional Semiconductor Structures provides a seamless, atoms-to-devices introduction to the latest quantum heterostructures. It covers their fabrication, their electronic, optical and transport properties, their role in exploring physical phenomena, and their utilization in devices. The authors begin with a detailed description of the epitaxial growth of semiconductors. They then deal with the physical behaviour of electrons and phonons in low-dimensional structures. A discussion of localization effects and quantum transport phenomena is followed by coverage of the optical properties of quantum wells. They then go on to discuss non-linear optics in quantum heterostructures. The final chapters deal with semiconductor lasers, mesoscopic devices, and high-speed heterostructure devices. The book contains many exercises and comprehensive references. It is suitable as a textbook for graduate-level courses in electrical engineering and applied physics. It will also be of interest to engineers involved in the development of semiconductor devices.


Author Notes

Keith Barnham received his PhD from the University of Birmingham. He is a Professor of Physics at Imperial College and the author of over 150 technical papers.
Dimitri Vvedensky received his PhD from the Massachusetts Institute of Technology. He is a Professor of Theoretical Condensed Matter Physics at Imperial College and the author of over 200 technical papers. He is a former Chairman of the Institute of Physics Thin Films and Surfaces Group and a Director of the Society for Engineering Science.


Table of Contents

D. D. VvedenskyE. A. JohnsonE. A. JohnsonM. P. BlencoweA. MacKinnonJ. NelsonC. C. PhillipsA. Khan and P. N. Stavrinou and G. ParryT. J. ThorntonJ. J. Harris
List of contributorsp. xii
Prefacep. xiii
1 Epitaxial Growth of Semiconductorsp. 1
1.1 Introductionp. 1
1.2 Epitaxial Growth Techniquesp. 3
1.2.1 Molecular-beam Epitaxyp. 3
1.2.2 Vapour-phase Epitaxyp. 6
1.2.3 Molecular-beam Epitaxy with Heteroatomic Precursorsp. 7
1.3 Epitaxial Growth Modesp. 8
1.4 In Situ Observation of Growth Kinetics and Surface Morphologyp. 10
1.4.1 Reflection High-energy Electron Diffractionp. 11
1.4.2 Scanning Tunnelling Microscopyp. 12
1.4.3 Atomic Force Microscopyp. 13
1.5 Atomistic Processes during Homoepitaxyp. 16
1.5.1 Growth Kinetics on Vicinal GaAs(001)p. 16
1.5.2 Anisotropic Growth and Surface Reconstructionsp. 19
1.5.2.1 Vicinal GaAs(001)p. 19
1.5.2.2 Vicinal Si(001)p. 21
1.6 Models of Homoepitaxial Kineticsp. 23
1.6.1 The Theory of Burton, Cabrera and Frankp. 23
1.6.2 Homogeneous Rate Equationsp. 24
1.6.3 Multilayer Growth on Singular Surfacesp. 27
1.7 Mechanisms of Heteroepitaxial Growthp. 29
1.7.1 Kinetics and Equilibrium with Misfit Strainp. 29
1.7.2 The Frenkel-Kontorova Modelp. 30
1.8 Direct Growth of Quantum Heterostructuresp. 32
1.8.1 Quantum Wells and Quantum-well Superlatticesp. 33
1.8.2 Quantum Wire Superlatticesp. 34
1.8.3 Self-organized Quantum Dotsp. 37
1.8.3.1 Stranski-Krastanov Growth of InAs on GaAs(001)p. 38
1.8.3.2 Controlled Positioning of Quantum Dotsp. 40
1.8.3.3 Ge 'Hut' Clusters on Si(001)p. 40
1.9 Growth on Patterned Substratesp. 42
1.9.1 Selective Area Growthp. 43
1.9.2 Quantum Wires on 'V-Grooved' Surfacesp. 43
1.9.3 Stranski--Krastanov Growth on Patterned Substratesp. 44
1.10 Future Directionsp. 46
Exercisesp. 47
Referencesp. 51
2 Electrons in Quantum Semiconductor Structures: An Introductionp. 56
2.1 Introductionp. 56
2.2 Ideal Low-dimensional Systemsp. 57
2.2.1 Free Electrons in Three Dimensions: A Reviewp. 57
2.2.2 Ideal Two-dimensional Electron Gasp. 58
2.2.3 Ideal Zero- and One-dimensional Electron Gasesp. 60
2.2.4 Quantum Wells, Wires, and Dotsp. 61
2.3 Real Electron Gases: Single Particle Modelsp. 61
2.3.1 Ideal Square Wellp. 62
2.3.2 Some Generalizationsp. 65
2.3.2.1 Holes in Quantum Wellsp. 65
2.3.2.2 Non-parabolicityp. 65
2.3.3 Finite Quantum Wells and Real Systemsp. 66
2.3.4 Interface Effectsp. 70
2.3.4.1 Effective Mass for Parallel Transportp. 70
2.3.4.2 Effective-mass Correction to Conduction-band Discontinuitiesp. 71
2.3.5 Quantum Wiresp. 73
2.3.5.1 Quantum Point Contactsp. 74
2.3.6 Quantum Dotsp. 75
Exercisesp. 76
Referencesp. 77
3 Electrons in Quantum Semiconductors Structures: More Advanced Systems and Methodsp. 79
3.1 Introductionp. 79
3.2 Many-body Effectsp. 79
3.2.1 The Hartree Approximationp. 79
3.2.2 Beyond the Hartree Approximationp. 81
3.2.3 The 2DEG at a Heterojunction Interfacep. 82
3.2.4 The Ideal Heterojunctionp. 85
3.3 Some Calculational Methodsp. 86
3.3.1 The WKB Approximationp. 87
3.3.2 The 2DEG in Doping Wellsp. 90
3.3.2.1 The Delta Well (Spike Doping)p. 93
3.3.3 The Thomas--Fermi Approximation for Two-dimensional Systemsp. 95
3.3.3.1 The Thomas--Fermi Approximation for Heterojunctions and Delta Wellsp. 96
3.4 Quantum Wires and Quantum Dotsp. 97
3.4.1 Quantum Point Contacts and Quantized Conductance Stepsp. 97
3.4.2 A Closer Look at Quantum Dotsp. 101
3.4.3 The Coulomb Blockade and Single-electron Transistorsp. 104
3.5 Superlatticesp. 106
3.5.1 Superlattices and Multi-quantum-wellsp. 107
3.5.2 Miniband Properties: The WKB Approximationp. 109
3.5.3 Doping Superlatticesp. 112
3.5.3.1 Delta-Doped n-i-p-isp. 114
3.5.3.2 Compositional and Doping Superlatticesp. 115
3.5.4 Other Types of Superlatticesp. 116
Exercisesp. 118
Referencesp. 122
4 Phonons in Low-dimensional Semiconductor Structuresp. 123
4.1 Introductionp. 123
4.2 Phonons in Heterostructuresp. 124
4.2.1 Superlatticesp. 125
4.2.2 Mesoscopic Phonon Phenomenap. 131
4.3 Electron--Phonon Interactions in Heterostructuresp. 135
4.4 Conclusionp. 144
Exercisesp. 145
Referencesp. 147
5 Localization and Quantum Transportp. 149
5.1 Introductionp. 149
5.2 Localizationp. 151
5.2.1 Percolationp. 151
5.2.2 The Anderson Transition and the Mobility Edgep. 151
5.2.3 Variable Range Hoppingp. 154
5.2.4 Minimum Metallic Conductivityp. 154
5.3 Scaling Theory and Quantum Interferencep. 155
5.3.1 The Gang of Fourp. 155
5.3.2 Experiments on Weak Localizationp. 157
5.3.3 Quantum Interferencep. 158
5.3.4 Negative Magnetoresistancep. 159
5.3.5 Single Rings and Non-local Transportp. 160
5.3.6 Spin--orbit Coupling, Magnetic Impurities, etc.p. 163
5.3.7 Universal Conductance Fluctuationsp. 163
5.3.8 Ballistic Transportp. 163
5.4 Interaction Effectsp. 164
5.4.1 The In T Correctionp. 164
5.4.2 Wigner Crystallizationp. 164
5.5 The Quantum Hall Effectp. 165
5.5.1 Generalp. 165
5.5.2 The Quantum Hall Effect Measurementsp. 168
5.5.3 The Semiclassical Theoryp. 170
5.5.4 The Fractional Quantum Hall Effectp. 172
Exercisesp. 175
Referencesp. 178
6 Electronic States and Optical Properties of Quantum Wellsp. 180
6.1 Introductionp. 180
6.2 The Envelope Function Schemep. 183
6.3 The Parabolic Band Modelp. 187
6.4 Effects of Band Mixingp. 192
6.4.1 Light Particle Band Non-parabolicityp. 192
6.4.2 Valence Band Non-parabolicityp. 193
6.5 Multiple Well Effectsp. 194
6.6 Effects of the Coulomb Interactionp. 197
6.6.1 Excitons in Bulk Semiconductorsp. 197
6.6.2 Excitons in Quantum Wellsp. 198
6.7 Effects of Applied Biasp. 201
6.8 Optical Absorption in a Quantum Wellp. 205
6.9 Optical Characterizationp. 209
6.9.1 Measurement of Absorptionp. 209
6.9.2 Features of Optical Spectrap. 211
6.9.2.1 Band Non-parabolicityp. 211
6.9.2.2 Valence Band Mixingp. 212
6.9.2.3 Interwell Couplingp. 214
6.9.2.4 Electric Fieldp. 214
6.10 Quantum-well Solar Cellsp. 215
6.10.1 Photoconversionp. 215
6.10.2 Basic Principlesp. 217
6.10.2.1 Photocurrentp. 217
6.10.2.2 Recombination Currentp. 221
6.10.2.3 Carrier Escapep. 221
6.11 Concluding Remarksp. 222
Exercisesp. 222
Referencesp. 225
7 Non-Linear Optics in Low-dimensional Semiconductorsp. 227
7.1 Introductionp. 227
7.2 Non-dissipative NLO Processesp. 229
7.3 Dissipative NLO Effectsp. 231
7.4 Potential Applications of NLOp. 232
7.4.1 Serial Channel Applicationsp. 232
7.4.2 Multi-channel Applications: Optical Computingp. 233
7.5 Excitonic Optical Saturation in MQWsp. 234
7.5.1 Excitonic Absorption at Low Intensitiesp. 234
7.5.2 Saturation of Excitonic Peaks at High Intensitiesp. 237
7.6 The Quantum Confined Stark Effectp. 239
7.7 Doping Superlattices ('n-i-p-i' Crystals)p. 242
7.8 Hetero--n-i-p-i Structuresp. 246
7.8.1 Band Filling Effects in Hetero--n-i-p-isp. 247
7.8.2 The QCSE in Hetero--n-i-p-isp. 249
7.9 Concluding Remarksp. 254
Exercisesp. 255
Referencesp. 257
8 Semiconductor Lasersp. 260
8.1 Introductionp. 260
8.2 Basic Laser Theoryp. 262
8.2.1 Laser Thresholdp. 265
8.2.2 Threshold Current Densityp. 267
8.2.3 Power Outputp. 270
8.3 Fundamental Gain Calculationsp. 272
8.3.1 Electronic Band Structure and Densities of Statesp. 272
8.3.2 Carrier Density and Inversionp. 274
8.3.3 Gain Expressionp. 276
8.3.4 Optical Gain in 2D and 3D Active Regionsp. 277
8.4 Strained Layersp. 280
8.4.1 Optical Interband Matrix Elementp. 284
8.5 Some other Laser Geometriesp. 286
Exercisesp. 292
Referencesp. 294
9 Mesoscopic Devicesp. 296
9.1 Introductionp. 296
9.2 Quantum Interference Transistorsp. 297
9.2.1 Quantum Interference and Negative Magnetoresistancep. 297
9.2.2 The Aharanov--Bohm Effectp. 303
9.2.3 Universal Conductance Fluctuationsp. 306
9.2.4 Quantum Interference Transistorsp. 309
9.2.4.1 The Gated Ring Interferometerp. 310
9.2.4.2 The Stub Tunerp. 311
9.2.4.3 Problems with Quantum Interference Transistorsp. 311
9.3 Ballistic Electron Devicesp. 314
9.3.1 Electron Transmission and the Landauer--Buttiker Formulap. 315
9.3.2 Quantized Conductance in Ballistic Point Contactsp. 316
9.3.3 Multi-terminal Devicesp. 318
9.3.3.1 The Negative Bend Resistancep. 318
9.3.3.2 Quenching of the Hall Effectp. 319
9.3.4 Possible Applications of Ballistic Electron Devicesp. 320
9.3.5 Boundary Scattering in Ballistic Structuresp. 323
9.4 Quantum Dot Resonant Tunnelling Devicesp. 325
9.4.1 Resonant Tunnelling through Quantum Wellsp. 326
9.4.2 Resonant Tunnelling through Quantum Dotsp. 328
9.4.3 Gated Resonant Tunnelling through Quantum Dotsp. 329
9.5 Coulomb Blockade and Single-electron Transistorsp. 331
9.5.1 Coulomb Blockade in the Current-biassed Single Junctionp. 332
9.5.2 Coulomb Blockade in Double Junctionsp. 334
9.5.3 Necessary Conditions for Efficient Coulomb Blockadep. 335
9.5.4 Single-electron Transistorsp. 335
9.5.5 Co-tunnelling and Multiple Tunnel Junctionsp. 339
9.5.6 Possible Applications of Single-electron Transistorsp. 340
9.6 The Future of Mesoscopic Devicesp. 342
Exercisesp. 343
Referencesp. 345
10 High-speed Heterostructure Devicesp. 348
10.1 Introductionp. 348
10.2 Field-effect Transistorsp. 349
10.2.1 The Si MOSFETp. 349
10.2.2 GaAs/AlGaAs High-electron-mobility Transistorp. 355
10.2.3 InGaAs HEMTsp. 358
10.2.4 Delta-doped FETsp. 361
10.3 Vertical Transport Devicesp. 363
10.3.1 Unipolar Diodesp. 364
10.3.2 Hot-electron Devicesp. 365
10.3.3 Resonant Tunnelling Structuresp. 367
10.3.4 Superlattice Devicesp. 370
10.3.5 Heterojunction Bipolar Transistorsp. 372
10.4 Conclusionsp. 375
Exercisesp. 375
Referencesp. 377
Solutions to Selected Exercisesp. 379
Indexp. 387
Go to:Top of Page