Cover image for Immersive audio signal processing
Title:
Immersive audio signal processing
Personal Author:
Series:
Information technology : transmission, processing and storage
Publication Information:
New York, NY : Springer, 2006
ISBN:
9780387284538
Added Author:

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010113107 TK5102.9 B42 2006 Open Access Book Book
Searching...

On Order

Summary

Summary

This graduate-level text lays out the foundation of DSP for audio and the fundamentals of auditory perception, then goes on to discuss immersive audio rendering and synthesis, the digital equalization of room acoustics, and various DSP implementations. It covers a variety of topics and up-to-date results in immersive audio processing research: immersive audio synthesis and rendering, multichannel room equalization, audio selective signal cancellation, multirate signal processing for audio applications, surround sound processing, psychoacoustics and its incorporation in audio signal processing algorithms for solving various problems, and DSP implementations of audio processing algorithms on semiconductor devices.


Table of Contents

Prefacep. vii
Part I Digital Signal Processing for Audio and Acoustics
1 Foundations of Digital Signal Processing for Audio and Acousticsp. 3
1.1 Basics of Digital Signal Processingp. 3
1.1.1 Discrete Time Signals and Sequencesp. 4
1.1.2 Linear Systemsp. 6
1.1.3 Time-Invariant Systemsp. 6
1.1.4 Linear and Time-Invariant Systemsp. 6
1.2 Fourier Transformsp. 8
1.2.1 Transfer Function Representationp. 10
1.3 The z-Transformp. 14
1.4 Sampling and Reconstructionp. 16
1.4.1 Ideal Samplingp. 17
1.4.2 Reconstruction of Continuous Time Signals from Discrete Time Sequencesp. 18
1.4.3 Sampling Rate Reduction by an Integer Factorp. 19
1.4.4 Increasing the Sampling Rate by an Integer Factorp. 21
1.4.5 Resampling for Audio Applicationsp. 22
1.5 Discrete Fourier Transformp. 23
1.6 Bilinear Transformp. 24
1.7 Summaryp. 25
2 Filter Design for Audio Applicationsp. 27
2.1 Filter Design Processp. 27
2.1.1 Desired Response Specificationp. 27
2.1.2 Approximating Error Functionp. 28
2.2 FIR Filter Designp. 28
2.2.1 Linear Phase Filter Designp. 29
2.2.2 Least Squares FIR Filter Designp. 29
2.2.3 FIR Windows for Filter Designp. 30
2.2.4 Adaptive FIR Filtersp. 35
2.3 IIR Filter Designp. 36
2.3.1 All-Pass Filtersp. 37
2.3.2 Butterworth Filtersp. 37
2.3.3 Chebyshev Filtersp. 38
2.3.4 Elliptic Filtersp. 40
2.3.5 Shelving and Parametric Filtersp. 40
2.3.6 Autoregressive or All-Pole Filtersp. 44
2.4 Summaryp. 46
Part II Acoustics and Auditory Perception
3 Introduction to Acoustics and Auditory Perceptionp. 49
3.1 Sound Propagationp. 49
3.2 Acoustics of a Simple Source in Free-Fieldp. 50
3.3 Modal Equations for Characterizing Room Acoustics at Low Frequenciesp. 51
3.3.1 Axial, Tangential, Oblique Modes and Eigenfrequenciesp. 53
3.4 Reverberation Time of Roomsp. 54
3.5 Room Acoustics from Schroeder Theoryp. 60
3.6 Measurement of Loudspeaker and Room Responsesp. 61
3.6.1 Room Response Measurement with Maximum Length Sequence (MLS)p. 61
3.6.2 Room Response Measurement with Sweep Signalsp. 63
3.7 Psychoacousticsp. 65
3.7.1 Structure of the Earp. 65
3.7.2 Loudness Perceptionp. 66
3.7.3 Loudness Versus Loudness Levelp. 68
3.7.4 Time Integrationp. 68
3.7.5 Frequency Selectivity of the Earp. 70
3.8 Summaryp. 72
Part III Immersive Audio Processing
4 Immersive Audio Synthesis and Rendering Over Loudspeakersp. 75
4.1 Introductionp. 75
4.2 Immersive Audio Synthesisp. 77
4.2.1 Microphone Signal Synthesisp. 77
4.2.2 Subjective Evaluation of Virtual Microphone Signalsp. 80
4.2.3 Spot Microphone Synthesis Methodsp. 80
4.2.4 Summary and Future Research Directionsp. 82
4.3 Immersive Audio Renderingp. 83
4.3.1 Rendering Filters for a Single Listenerp. 83
4.3.2 Rendering Filters for Multiple Listenersp. 87
4.3.3 Simulation Resultsp. 94
4.3.4 Summaryp. 96
5 Multiple Position Room Response Equalizationp. 99
5.1 Introductionp. 100
5.2 Backgroundp. 101
5.3 Single-Point Room Response Equalizationp. 102
5.4 Multiple-Point (Position) Room Response Equalizationp. 103
5.5 Designing Equalizing Filters Using Pattern Recognitionp. 105
5.5.1 Review of Cluster Analysis in Relation to Acoustical Room Responsesp. 105
5.5.2 Fuzzy c-means for Determining the Prototypep. 105
5.5.3 Cluster Validity Indexp. 107
5.5.4 Multiple Listener Room Equalization with Low Filter Ordersp. 107
5.6 Visualization of Room Acoustic Responsesp. 109
5.7 The Sammon Mapp. 110
5.8 Resultsp. 112
5.9 The Influence of Reverberation on Room Equalizationp. 121
5.9.1 Image Methodp. 121
5.9.2 RMS Average Filtersp. 121
5.9.3 Resultsp. 122
5.10 Summaryp. 123
6 Practical Considerations for Multichannel Equalizationp. 125
6.1 Introductionp. 126
6.2 Objective Function-Based Crossover Frequency Selectionp. 130
6.3 Phase Interaction Between Noncoincident Loudspeakersp. 132
6.3.1 The Influence of Phase on the Net Magnitude Responsep. 134
6.4 Phase Equalization with All-Pass Filtersp. 134
6.4.1 Second-Order All-Pass Networksp. 134
6.4.2 Phase Correction with Cascaded All-Pass Filtersp. 136
6.4.3 Resultsp. 139
6.5 Objective Function-Based Bass Management Filter Parameter Optimizationp. 139
6.5.1 Resultsp. 144
6.6 Multiposition Bass Management Filter Parameter Optimizationp. 146
6.6.1 Resultsp. 147
6.7 Spectral Deviation and Time Delay-Based Correctionp. 150
6.7.1 Results for Spectral Deviation and Time Delay-Based Crossover Correctionp. 152
6.8 Summaryp. 153
7 Robustness of Equalization to Displacement Effects: Part Ip. 157
7.1 Introductionp. 157
7.2 Room Acoustics for Simple Sourcesp. 161
7.3 Mismatch Analysis for Spatial Average Equalizationp. 162
7.3.1 Analytic Expression for Mismatch Performance Functionp. 162
7.3.2 Analysis of Equalization Errorp. 165
7.4 Resultsp. 166
7.5 Summaryp. 168
8 Robustness of Equalization to Displacement Effects: Part IIp. 171
8.1 Introductionp. 171
8.2 Modal Equations for Room Acousticsp. 172
8.3 Mismatch Analysis with Spatial Average Equalizationp. 172
8.3.1 Spatial Averaging for Multiple Listener Equalizationp. 172
8.3.2 Equalization Performance Due to Mismatchp. 173
8.4 Resultsp. 177
8.4.1 Magnitude Response Spatial Averagingp. 177
8.4.2 Computation of the Quantum Numbersp. 178
8.4.3 Theoretical Resultsp. 180
8.4.4 Validationp. 181
8.4.5 Magnitude Response Single-Listener Equalizationp. 183
8.5 Summaryp. 185
9 Selective Audio Signal Cancellationp. 187
9.1 Introductionp. 187
9.2 Traditional Methods for Acoustic Signal Cancellationp. 189
9.2.1 Passive Techniquesp. 189
9.2.2 Active Techniquesp. 190
9.2.3 Parametric Loudspeaker Arrayp. 191
9.3 Eigenfilter Design for Conflicting Listener Environmentsp. 191
9.3.1 Backgroundp. 191
9.3.2 Determination of the Eigenfilterp. 192
9.3.3 Theoretical Properties of Eigenfiltersp. 195
9.4 Resultsp. 198
9.4.1 Eigenfilter Performance as a Function of Filter Order Mp. 198
9.4.2 Performance Sensitivity as a Function of the Room Response Durationp. 202
9.5 Summaryp. 205
Referencesp. 209
Indexp. 213