Cover image for Materials science of membranes for gas and vapor separation
Title:
Materials science of membranes for gas and vapor separation
Publication Information:
Chichester, West Sussex : John Wiley & Sons, 2006
ISBN:
9780470853450

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010113082 TP248.25.M46 M37 2006 Open Access Book Book
Searching...
Searching...
30000010087592 TP248.25.M46 M37 2006 Open Access Book Book
Searching...

On Order

Summary

Summary

Materials Science of Membranes for Gas and Vapor Separation is a one-stop reference for the latest advances in membrane-based separation and technology. Put together by an international team of contributors and academia, the book focuses on the advances in both theoretical and experimental materials science and engineering, as well as progress in membrane technology. Special attention is given to comparing polymer and inorganic/organic separation and other emerging applications such as sensors.

This book aims to give a balanced treatment of the subject area, allowing the reader an excellent overall perspective of new theoretical results that can be applied to advanced materials, as well as the separation of polymers. The contributions will provide a compact source of relevant and timely information and will be of interest to government, industrial and academic polymer chemists, chemical engineers and materials scientists, as well as an ideal introduction to students.


Author Notes

Dr Y.P. Yampolskii, Topchiev Institute of Petrochemical Synthesis, Moscow, Russia

Dr I. Pinnau , Membrane Technology and Research, Inc., Menlo Park, CA, USA

Professor B.D. Freeman , University of Texas at Austin, TX, USA


Table of Contents

Scott Matteucci and Yuri Yampolskii and Benny D. Freeman and Ingo PinnauDoros N. TheodorouJoel R. FriedFerruccio Doghieri and Massimiliano Quinzi and David G. Rethwisch and Giulio C. SartiJohannes G. (Hans) Wijmans and Richard W. BakerYuri Yampolskii and Victor ShantarovichAlexander Alentiev and Yuri YampolskiiToshio Masuda and Kazukiyo NagaiTim C. Merkel and Ingo Pinnau and Rajeev Prabhakar and Benny D. FreemanKazuhiro Tanaka and Ken-Ichi OkamotoPeter H. PfrommGeorge R. GavalasHidetoshi KitaTadashi UragamiHidetoshi KitaYong Soo Kang and Jong Hak Kim and Jongok Won and Hoon Sik KimRichard D. Noble and Carl A. Koval
Contributorsp. xiii
Prefacep. xvii
1 Transport of Gases and Vapors in Glassy and Rubbery Polymersp. 1
1.1 Background and Phenomenologyp. 1
1.2 Effects of Gas and Polymer Properties on Transport Coefficientsp. 7
1.2.1 Effect of Gas Properties on Solubility and Diffusivityp. 7
1.2.2 Effect of Polymer Properties on Transport Parametersp. 14
1.3 Effect of Pressure on Transport Parametersp. 18
1.3.1 Sorptionp. 18
1.3.2 Diffusionp. 22
1.3.3 Permeabilityp. 22
1.3.4 Selectivityp. 22
1.4 Effect of Temperature on Transport Parametersp. 30
1.5 Structure/Property Relationsp. 31
1.5.1 Connector Groupsp. 35
1.5.2 CF[subscript 3] and Other Fluorinated Moieties as Side-chainsp. 36
1.5.3 Polar and Hydrogen Bonding Side-chainsp. 36
1.5.4 Para versus Meta Linkagesp. 37
1.5.5 Cis/Trans Configurationp. 37
1.6 Conclusionsp. 38
Referencesp. 40
2 Principles of Molecular Simulation of Gas Transport in Polymersp. 49
2.1 Introductionp. 49
2.2 Generating Model Configurations for Amorphous Polymersp. 50
2.2.1 Models and Force Fieldsp. 50
2.2.2 Molecular Mechanicsp. 52
2.2.3 Molecular Dynamicsp. 52
2.2.4 Monte Carlop. 53
2.2.5 Coarse-graining Strategiesp. 54
2.2.6 Generating Glasses from Meltsp. 55
2.3 Validating Model Amorphous Polymer Configurationsp. 57
2.3.1 Thermodynamic Propertiesp. 57
2.3.2 Molecular Packingp. 58
2.3.3 Segmental Dynamicsp. 59
2.3.4 Accessible Volume and its Distributionp. 61
2.4 Prediction of Sorption Equilibriap. 64
2.4.1 Sorption Thermodynamicsp. 64
2.4.2 Calculations of Low-pressure Sorption Thermodynamicsp. 67
2.4.3 Calculations of High-pressure Sorption Thermodynamicsp. 68
2.4.4 Ways to Overcome the Insertion Problemp. 70
2.5 Prediction of Diffusivityp. 72
2.5.1 Statistical Mechanics of Diffusionp. 72
2.5.2 Self-diffusivities from Equilibrium Molecular Dynamicsp. 73
2.5.3 Diffusivities from Nonequilibrium Molecular Dynamicsp. 74
2.5.4 Diffusion in Low-temperature Polymer Matrices as a Sequence of Infrequent Penetrant Jumpsp. 75
2.5.5 Gusev-Suter TST Method for Polymer Matrices Undergoing Isotropic 'Elastic' Motionp. 77
2.5.6 Multidimensional TST Approach to Gas Diffusion in Glassy Polymersp. 80
2.5.7 Anomalous Diffusion: Its Origins and Implicationsp. 86
2.6 Conclusions and Outlookp. 87
Acknowledgementsp. 89
Referencesp. 89
3 Molecular Simulation of Gas and Vapor Transport in Highly Permeable Polymersp. 95
3.1 Fundamentals of Membrane Transportp. 95
3.1.1 Solubilityp. 95
3.1.2 Diffusivityp. 96
3.1.3 Permeabilityp. 97
3.1.4 Free Volumep. 99
3.1.5 d-Spacingp. 101
3.1.6 Transport in Semicrystalline Polymersp. 101
3.2 Computational Methodsp. 101
3.2.1 Solubilityp. 102
3.2.2 Diffusivityp. 102
3.2.3 Free Volumep. 104
3.2.4 d-Spacingp. 105
3.2.5 Pair Correlation Functionsp. 105
3.2.6 Molecular Mobilityp. 105
3.2.7 Guidelines for Molecular Simulationsp. 105
3.3 Polymer Studiesp. 106
3.3.1 Polyetherimidep. 107
3.3.2 Polysulfonesp. 107
3.3.3 Polycarbonatesp. 108
3.3.4 Poly(2,6-dimethyl-1,4-phenylene oxide)p. 109
3.3.5 Polyimidesp. 110
3.3.6 Polyphosphazenesp. 114
3.3.7 Main-chain Silicon-containing Polymersp. 116
3.3.8 Poly[1-(trimethylsilyl)-1-propyne]p. 120
3.3.9 Amorphous Teflonp. 124
3.4 Conclusionsp. 126
Appendices: Primary Force Fields Used in the Simulation of Transport in Polymeric Systemsp. 126
Appendix 1 DREIDINGp. 126
Appendix 2 GROMOSp. 126
Appendix 3 COMPASSp. 127
Referencesp. 127
4 Predicting Gas Solubility in Membranes through Non-Equilibrium Thermodynamics for Glassy Polymersp. 137
4.1 Introductionp. 137
4.2 Backgroundp. 138
4.2.1 Pseudo-solubility Calculationp. 140
4.2.2 Lattice Fluid Model (Sanchez and Lacombe)p. 141
4.2.3 Tangent-Hard-sphere-Chain Equation of Statep. 142
4.2.4 Retrieving Parameters and Building Pseudo-Equilibrium Solubility Modelsp. 143
4.3 Solubility Calculation and Comparison with Experimental Datap. 144
4.3.1 Prediction of the Low-pressure Gas Solubility in Glassy Polymersp. 144
4.3.2 Prediction of the Low-pressure Solubility Coefficient of Gases in Glassy Polymersp. 148
4.3.3 Correlation of Low-pressure Solubility Coefficients in Glassy Polymersp. 151
4.3.4 Correlation of High-pressure Gas Solubility in Glassy Polymersp. 153
4.4 Discussion and Conclusionsp. 155
Acknowledgementsp. 157
Referencesp. 157
5 The Solution-Diffusion Model: A Unified Approach to Membrane Permeationp. 159
5.1 Introductionp. 159
5.2 The Solution-Diffusion Modelp. 159
5.3 One-component Transport in Hyperfiltration (Reverse Osmosis), Gas Separation and Pervaporation Membranesp. 163
5.3.1 Hyperfiltration (Reverse Osmosis)p. 163
5.3.2 Gas Separationp. 166
5.3.3 Pervaporationp. 167
5.4 A Unified Viewp. 170
5.5 Multi-component Transport in Hyperfiltration (Reverse Osmosis), Gas Separation and Pervaporation Membranesp. 173
5.5.1 Hyperfiltration (Reverse Osmosis)p. 173
5.5.2 Gas Separationp. 178
5.5.3 Pervaporationp. 182
5.6 Conclusions and Future Directionsp. 187
Referencesp. 188
6 Positron Annihilation Lifetime Spectroscopy and Other Methods for Free Volume Evaluation in Polymersp. 191
6.1 Introductionp. 191
6.2 Free Volume: Definitions and Effects on the Transport Parametersp. 192
6.3 Positron Annihilation Lifetime Spectroscopyp. 193
6.4 [superscript 129]Xe NMR Studyp. 200
6.5 Inverse Gas Chromatographyp. 201
6.6 Other Probe Methodsp. 205
6.6.1 Photochromic Probesp. 205
6.6.2 Electrochromic Probesp. 205
6.7 Conclusionsp. 206
Appendix List of Polymersp. 206
Referencesp. 207
7 Prediction of Gas Permeation Parameters of Polymersp. 211
7.1 Introductionp. 211
7.2 Group Contribution Methodsp. 215
7.3 Graph Theoretical Approachp. 222
7.4 Artificial Neural Networksp. 223
7.5 Computer Simulationsp. 224
7.6 Conclusionsp. 226
Referencesp. 227
8 Synthesis and Permeation Properties of Substituted Polyacetylenes for Gas Separation and Pervaporationp. 231
8.1 Introductionp. 231
8.2 Polymer Synthesisp. 233
8.2.1 General Features of the Polymerizationp. 233
8.2.2 Poly[1-(trimethylsilyl)-1-propyne] and its Analoguesp. 234
8.2.3 Polydiarylacetylenes and their Derivativesp. 236
8.2.4 Ring-substituted Polyphenylacetylenesp. 238
8.3 Gas and Vapor Separationp. 239
8.3.1 Gas/Gas Separationp. 239
8.3.2 Vapor/Gas Separationp. 241
8.3.3 Vapor/Vapor Separationp. 243
8.4 Pervaporationp. 244
8.4.1 Alcohol/Water Separationp. 244
8.4.2 Organic Liquid/Water Separationp. 245
8.4.3 Organic Liquid/Organic Liquid Separationp. 246
8.5 Concluding Remarksp. 246
Referencesp. 247
9 Gas and Vapor Transport Properties of Perfluoropolymersp. 251
9.1 Introductionp. 251
9.2 Amorphous Perfluoropolymers as Membrane Materialsp. 252
9.3 The Nature of Fluorocarbon/Hydrocarbon Interactionsp. 260
9.3.1 Differences in Ionization Potentials between Fluorocarbons and Hydrocarbonsp. 261
9.3.2 Non-central Force Fieldsp. 263
9.4 Conclusionsp. 266
Referencesp. 267
10 Structure and Transport Properties of Polyimides as Materials for Gas and Vapor Membrane Separationp. 271
10.1 Introductionp. 271
10.2 Fundamentalsp. 273
10.2.1 Packing Density of Polyimidesp. 273
10.2.2 Transport Propertiesp. 274
10.2.3 Diffusion and Solubility Coefficients of Gasesp. 275
10.3 Effect of Morphologyp. 276
10.4 Factors Controlling Transport Propertiesp. 277
10.4.1 Factors Controlling Diffusion Coefficientp. 277
10.4.2 Factors Controlling Solubility Coefficientp. 280
10.5 Structure-Property Relationshipp. 281
10.5.1 Effect of Structures of Acid Dianhydridesp. 281
10.5.2 Effect of Structures of Diaminesp. 282
10.5.3 Separation Performance for Particular Systemsp. 283
10.5.4 A Group Contribution Method for Polyimidesp. 285
10.5.5 Enhancement of Solubility Selectivity for CO[subscript 2]/N[subscript 2] Separationp. 285
10.5.6 Enhancement of Diffusivity Selectivity for H[subscript 2]/CH[subscript 4] Separationp. 287
10.5.7 Water Vapor Permeationp. 287
10.6 Conclusionsp. 288
Referencesp. 288
11 The Impact of Physical Aging of Amorphous Glassy Polymers on Gas Separation Membranesp. 293
11.1 Introductionp. 293
11.2 Scopep. 294
11.3 Observations on Integral-Asymmetric Membranesp. 294
11.4 Physical Aging of Glassy Polymersp. 295
11.4.1 The Experimental Challenge Posed by Glassy Polymersp. 295
11.4.2 The Glassy State in Amorphous Polymersp. 295
11.4.3 Aging Mechanisms and Modelsp. 296
11.5 The Thickness-dependence of Aging in Glassy Polymersp. 297
11.5.1 Influence of the Thickness on T[subscript g], Density, and Free Volumep. 297
11.5.2 A Phenomenological Model for Thickness-Dependent Agingp. 298
11.5.3 Influence of the Thickness on Time-dependent Properties of Thin Polymer Films far below the T[subscript g]p. 298
11.5.4 Special Case: Aging of Poly(trimethylsilyl propyne)p. 302
11.6 Implications of Thickness-dependent Aging for Practical Membrane Gas Separationsp. 304
11.7 Concluding Remarksp. 304
Referencesp. 304
12 Zeolite Membranes for Gas and Liquid Separationsp. 307
12.1 Introductionp. 307
12.2 Membrane Preparationp. 309
12.2.1 General Issuesp. 309
12.2.2 MFI Membrane Preparationp. 310
12.2.3 Zeolite A Membrane Preparationp. 315
12.2.4 Zeolite Y Membrane Preparationp. 316
12.3 Characterizationp. 316
12.3.1 General on Techniques and Resultsp. 316
12.3.2 Membrane Defectsp. 320
12.4 Permeation Measurementsp. 321
12.4.1 Measurement Techniquesp. 321
12.4.2 Survey of Permeation Resultsp. 323
12.5 Theory and Modeling of Transport in Zeolite Membranesp. 331
12.6 Concluding Remarksp. 332
Acknowledgementsp. 333
Referencesp. 333
13 Gas and Vapor Separation Membranes Based on Carbon Membranesp. 337
13.1 Introductionp. 337
13.2 Preparation and Characterization of Carbon Membranesp. 338
13.2.1 Self-supported Carbon Membranesp. 338
13.2.2 Supported Carbon Membranesp. 345
13.3 Gas Transport and Separationp. 349
13.4 Vapor Permeation and Pervaporationp. 351
13.5 Conclusionsp. 352
Referencesp. 353
14 Polymer Membranes for Separation of Organic Liquid Mixturesp. 355
14.1 Introductionp. 355
14.2 Structural Design of Polymer Membranesp. 355
14.2.1 Chemical Design of Membrane Materialsp. 355
14.2.2 Physical Construction of Polymer Membranesp. 356
14.3 Separation Mechanismp. 356
14.3.1 Pervaporationp. 356
14.3.2 Evapomeationp. 358
14.3.3 Temperature-difference Controlled Evapomeationp. 359
14.4 Separation of Organic Liquid Mixturesp. 359
14.4.1 Alcohol/Water Separationp. 359
14.4.2 Hydrocarbon/Water Separationp. 362
14.4.3 Organic/Organic Separationp. 364
14.4.4 Benzene/Cyclohexane Separationp. 365
14.5 Conclusionsp. 368
Referencesp. 369
15 Zeolite Membranes for Pervaporation and Vapor Permeationp. 373
15.1 Introductionp. 373
15.2 Zeolite Membranes for Water/Organic Liquid Separationp. 374
15.2.1 Hydrophilic Membranesp. 374
15.2.2 Organophilic Membranesp. 379
15.3 Zeolite Membranes for Organic/Organic Separationp. 381
15.3.1 Alcohol/Ether Separationp. 381
15.3.2 Aromatic/Non-Aromatic Separationp. 383
15.3.3 Xylene Isomer Separationp. 384
15.4 Integrated Systems Involving Pervaporation or Vapor Permeation by Zeolite Membranesp. 385
15.5 Manufacture of Zeolite Membranes for Pervaporation and Vapor Separationp. 386
15.6 Conclusionsp. 387
Referencesp. 388
16 Solid-State Facilitated Transport Membranes for Separation of Olefins/Paraffins and Oxygen/Nitrogenp. 391
16.1 Introductionp. 391
16.2 Carrier Properties and Transport Mechanismp. 392
16.2.1 Carrier Propertiesp. 392
16.2.2 Transport Mechanismp. 398
16.3 Mathematical Modelsp. 400
16.3.1 Dual-sorption Modelp. 400
16.3.2 Effective Diffusion Coefficient Modelp. 401
16.3.3 Limited Mobility of Chained Carriers Modelp. 401
16.3.4 Concentration Fluctuation Modelp. 402
16.3.5 Hopping Model versus Concentration Fluctuation Modelp. 403
16.4 Separation Performance of Olefins and Oxygenp. 403
16.4.1 Olefins/Paraffins Separationp. 404
16.4.2 Oxygen/Nitrogen Separationp. 405
16.5 Membrane Stabilityp. 405
16.6 Conclusionsp. 407
Referencesp. 408
17 Review of Facilitated Transport Membranesp. 411
17.1 Introductionp. 411
17.2 Experimental Methodsp. 412
17.3 Modelingp. 413
17.4 Membrane Configurationsp. 416
17.5 Hybrid Processesp. 418
17.6 Additional Driving Forcesp. 418
17.7 Methods for Implementation of Active Transportp. 419
17.8 Novel Liquid Phases - Ionic Liquidsp. 421
17.9 Novel Liquid Phases - Electrohydrodynamic Fluidsp. 422
17.10 Incorporation of the Complexing Agent into the Membranep. 423
17.11 Unsaturated Hydrocarbonsp. 423
17.11.1 Scope of Researchp. 423
17.11.2 Mechanistic Studiesp. 424
17.11.3 Membrane Morphologyp. 424
17.11.4 Olefin-Ag(I) Complexationp. 424
17.11.5 Effect of Water on Performancep. 425
17.11.6 Other Complexing Agentsp. 426
17.12 Gas Separationsp. 426
17.12.1 Oxygen/Nitrogen Separationsp. 426
17.12.2 Carbon Dioxide Separationsp. 427
17.13 Organic Substancesp. 427
17.14 Biological Complexing Agentsp. 428
17.15 Concluding Remarksp. 428
Referencesp. 428
Indexp. 437