Skip to:Content
|
Bottom
Cover image for Stochastic methods in finance : lectures given at the C.I.M.E.-E.M.S. Summer School held in Bressanone/Brixen, Italy, July 6-12, 2003
Title:
Stochastic methods in finance : lectures given at the C.I.M.E.-E.M.S. Summer School held in Bressanone/Brixen, Italy, July 6-12, 2003
Series:
Lecture notes in mathematics ; 1856
Publication Information:
Berlin : Springer-Verlag, 2004
ISBN:
9783540229537

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010118932 QA3.L28 S76 2004 Open Access Book Proceedings, Conference, Workshop etc.
Searching...

On Order

Summary

Summary

This volume includes the five lecture courses given at the CIME-EMS School on "Stochastic Methods in Finance" held in Bressanone/Brixen, Italy 2003. It deals with innovative methods, mainly from stochastic analysis, that play a fundamental role in the mathematical modelling of finance and insurance: the theory of stochastic processes, optimal and stochastic control, stochastic differential equations, convex analysis and duality theory. Five topics are treated in detail: Utility maximization in incomplete markets; the theory of nonlinear expectations and its relationship with the theory of risk measures in a dynamic setting; credit risk modelling; the interplay between finance and insurance; incomplete information in the context of economic equilibrium and insider trading.


Table of Contents

Kerry BackTomasz R. Bielecki and Monique Jeanblanc and Marek RutkowskiChristian HippShige PengWalter Schachermayer
Incomplete and Asymmetric Information in Asset Pricing Theoryp. 1
1 Filtering Theoryp. 1
1.1 Kalman-Bucy Filterp. 3
1.2 Two-State Markov Chainp. 4
2 Incomplete Informationp. 5
2.1 Seminal Workp. 5
2.2 Markov Chain Models of Production Economiesp. 6
2.3 Markov Chain Models of Pure Exchange Economiesp. 7
2.4 Heterogeneous Beliefsp. 11
3 Asymmetric Informationp. 12
3.1 Anticipative Informationp. 12
3.2 Rational Expectations Modelsp. 13
3.3 Kyle Modelp. 16
3.4 Continuous-Time Kyle Modelp. 18
3.5 Multiple Informed Traders in the Kyle Modelp. 20
Referencesp. 23
Modeling and Valuation of Credit Riskp. 27
1 Introductionp. 27
2 Structural Approachp. 29
2.1 Basic Assumptionsp. 29
Defaultable Claimsp. 29
Risk-Neutral Valuation Formulap. 31
Defaultable Zero-Coupon Bondp. 32
2.2 Classic Structural Modelsp. 34
Merlon's Modelp. 34
Black and Cox Modelp. 37
2.3 Stochastic Interest Ratesp. 43
2.4 Credit Spreads: A Case Studyp. 45
2.5 Comments on Structural Modelsp. 46
3 Intensity-Based Approachp. 47
3.1 Hazard Functionp. 47
Hazard Function of a Random Timep. 48
Associated Martingalesp. 49
Change of a Probability Measurep. 50
Martingale Hazard Functionp. 53
Defaultable Bonds: Deterministic Intensityp. 53
3.2 Hazard Processesp. 55
Hazard Process of a Random Timep. 56
Valuation of Defaultable Claimsp. 57
Alternative Recovery Rulesp. 59
Defaultable Bonds: Stochastic Intensityp. 63
Martingale Hazard Processp. 64
Martingale Hypothesisp. 65
Canonical Constructionp. 67
Kusuoka's Counter-Examplep. 69
Change of a Probabilityp. 70
Statistical Probabilityp. 72
Change of a Numerairep. 74
Preprice ofa Defaultable Claimp. 77
Credit Default Swaptionp. 79
A Practical Examplep. 82
3.3 Martingale Approachp. 84
Standing Assumptionsp. 85
Valuation of Defaultable Claimsp. 85
Martingale Approach under (H.1)p. 87
3.4 Further Developmentsp. 88
Default-Adjusted Martingale Measurep. 88
Hybrid Modelsp. 89
Unified Approachp. 90
3.5 Comments on Intensity-Based Modelsp. 90
4 Dependent Defaults and Credit Migrationsp. 91
4.1 Basket Credit Derivativesp. 92
The i th -to-Default Contingent Claimsp. 92
Case of Two Entitiesp. 93
4.2 Conditionally Independent Defaultsp. 94
Canonical Constructionp. 94
Independent Default Timesp. 95
Signed Intensitiesp. 96
Valuation of FDC and LDCp. 96
General Valuation Formulap. 97
Default Swap of Basket Typep. 98
4.3 Copula-Based Approachesp. 99
Direct Applicationp. 100
Indirect Applicationp. 100
Simplified Versionp. 102
4.4 Jarrow and Yu Modelp. 103
Construction and Properties of the Modelp. 103
Bond Valuationp. 105
4.5 Extension of the Jarrow and Yu Modelp. 106
Kusuoka's Constructionp. 107
Interpretation of Intensitiesp. 108
Bond Valuationp. 108
4.6 Dependent Intensities of Credit Migrationsp. 109
Extension of Kusuoka's Constructionp. 109
4.7 Dynamics of Dependent Credit Ratingsp. 112
4.8 Defaultable Term Structurep. 113
Standing Assumptionsp. 113
Credit Migration Processp. 116
Defaultable Term Structurep. 117
Premia for Interest Rate and Credit Event Risksp. 119
Defaultable Coupon Bondp. 120
Examples of Credit Derivativesp. 121
4.9 Concluding Remarksp. 122
Referencesp. 123
Stochastic Control with Application in Insurancep. 127
1 Prefacep. 127
2 Introduction Into Insurance Riskp. 128
2.1 The Lundberg Risk Modelp. 128
2.2 Alternativesp. 129
2.3 Ruin Probabilityp. 129
2.4 Asymptotic Behavior For Ruin Probabilitiesp. 131
3 Possible Control Variables and Stochastic Controlp. 132
3.1 Possible Control Variablesp. 132
Investment, One Risky Assetp. 132
Investment Two or More Risky Assetsp. 133
Proportional Reinsurancep. 134
Unlimited XL Reinsurancep. 134
XL-Reinsurancep. 135
Premium Controlp. 135
Control of New Businessp. 135
3.2 Stochastic Controlp. 136
Objective Functionsp. 136
Infinitesimal Generatorsp. 137
Hamilton-Jacobi-Bellman Equationsp. 139
Verification Argumentp. 141
Steps for Solutionp. 143
4 Optimal Investment for Insurersp. 143
4.1 HJB and its Handy Formp. 143
4.2 Existence of a Solutionp. 145
4.3 Exponential Claim Sizesp. 145
4.4 Two or More Risky Assetsp. 147
5 Optimal Reinsurance and Optimal New Businessp. 148
5.1 Optimal Proportional Reinsurancep. 150
5.2 Optimal Unlimited XL Reinsurancep. 151
5.3 Optimal XL Reinsurancep. 152
5.4 Optimal New Businessp. 153
6 Asymptotic Behavior for Value Function and Strategiesp. 154
6.1 Optimal Investment: Exponential Claimsp. 154
6.2 Optimal Investment: Small Claimsp. 154
6.3 Optimal Investment: Large Claimsp. 155
6.4 Optimal Reinsurancep. 156
7 A Control Problem with Constraint: Dividends and Ruinp. 157
7.1 A Simple Insurance Model with Dividend Paymentsp. 157
7.2 Modified HJB Equationp. 158
7.3 Numerical Example and Conjecturesp. 159
7.4 Earlier and Further Workp. 161
8 Conclusionsp. 162
Referencesp. 163
Nonlinear Expectations, Nonlinear Evaluations and Risk Measuresp. 165
1 Introductionp. 165
1.1 Searching the Mechanism of Evaluations of Risky Assetsp. 165
1.2 Axiomatic Assumptions for Evaluations of Derivativesp. 166
General Situations: {{\cal F}}_t^X -Consistent Nonlinear Evaluationsp. 166
{{\cal F}}_t^X -Consistent Nonlinear Expectationsp. 167
1.3 Organization of the Lecturep. 168
2 Brownian Filtration Consistent Evaluations and Expectationsp. 169
2.1 Main Notations and Definitionsp. 169
2.2 {{\cal F}}_t -Consistent Nonlinear Expectationsp. 171
2.3 {{\cal F}}_t -Consistent Nonlinear Evaluationsp. 173
3 Backward Stochastic Differential Equations: g-Evaluations and g-Expectationsp. 176
3.1 BSDE: Existence, Uniqueness and Basic Estimatesp. 176
3.2 1-Dimensional BSDEp. 182
Comparison Theoremp. 183
Backward Stochastic Monotone Semigroups and g-Evaluationsp. 186
Example: Black-Scholes Evaluationsp. 188
Expectationsp. 189
Upcrossing Inequality of ¿ g -Supermartingales and Optional Sampling Inequalityp. 193
3.3 A Monotonie Limit Theorem of BSDEp. 199
3.4 g-Martingales and (Nonlinear) g-Supermartingale Decomposition Theoremp. 201
4 Finding the Mechanism: Is an {{\cal F}} -Expectation a g-Expectation?p. 204
4.1 ¿ ¿ -Dominated {{\cal F}} -Expectationsp. 204
4.2 {{\cal F}}_t -Consistent Martingalesp. 207
4.3 BSDE under {{\cal F}}_t -Consistent Nonlinear Expectationsp. 210
4.4 Decomposition Theorem for \cal E}} -Supermartingalesp. 213
4.5 Representation Theorem of an {{\cal F}} -Expectation by a g-Expectationp. 216
4.6 How to Test and Find g?p. 219
4.7 A General Situation: {{\cal F}}_t -Evaluation Representation Theoremp. 220
5 Dynamic Risk Measuresp. 221
6 Numerical Solution of BSDEs: Euler's Approximationp. 222
7 Appendixp. 224
7.1 Martingale Representation Theoremp. 224
7.2 A Monotonic Limit Theorem of Itô's Processesp. 226
7.3 Optional Stopping Theorem for {{\cal E}}^g -Supermartingalep. 232
Referencesp. 238
References on BSDE and Nonlinear Expectationsp. 240
Utility Maximisation in Incomplete Marketsp. 255
1 Problem Settingp. 255
2 Models on Finite Probability Spacesp. 259
2.1 Utility Maximizationp. 266
The complete Case (Arrow)p. 266
The Incomplete Casep. 272
3 The General Casep. 277
3.1 The Reasonable Asymptotic Elasticity Conditionp. 277
3.2 Existence Theoremsp. 281
Referencesp. 289
Go to:Top of Page