Skip to:Content
|
Bottom
Cover image for Stabilization, optimal and robust control : theory and applications in biological and physical sciences
Title:
Stabilization, optimal and robust control : theory and applications in biological and physical sciences
Personal Author:
Series:
Communications and control engineering
Publication Information:
London : Springer, 2008
Physical Description:
xxi, 502 p. ; 24 cm.
ISBN:
9781848003439

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010194206 TJ217.2 B44 2008 Open Access Book Book
Searching...

On Order

Summary

Summary

Stabilization, Optimal and Robust Control develops robust control of infinite-dimensional dynamical systems derived from time-dependent coupled PDEs associated with boundary-value problems. Rigorous analysis takes into account nonlinear system dynamics, evolutionary and coupled PDE behaviour and the selection of function spaces in terms of solvability and model quality.

Mathematical foundations are provided so that the book remains accessible to the non-control-specialist. Following chapters giving a general view of convex analysis and optimization and robust and optimal control, problems arising in fluid mechanical, biological and materials scientific systems are laid out in detail.

The combination of mathematical fundamentals with application of current interest will make this book of much interest to researchers and graduate students looking at complex problems in mathematics, physics and biology as well as to control theorists.


Table of Contents

Notation and Symbolsp. xix
1 General Introductionp. 1
1.1 Motivations and Objectivesp. 2
1.2 General Process of the Robust Control Theoryp. 6
1.3 Applications to Biological and Physical Sciencesp. 7
1.3.1 Material Sciencesp. 8
1.3.2 Fluid Mechanicsp. 9
1.3.3 Biological Modelsp. 9
1.3.4 Other Systemsp. 10
Part I Convex Analysis and Duality Principles
2 Convexity and Topologyp. 13
2.1 Convex Setsp. 13
2.1.1 Definitionsp. 13
2.1.2 Topological Spaces and Propertiesp. 14
2.1.3 Hahn-Banach and Separation Between Convex Setsp. 17
2.2 Convex Functionsp. 19
2.2.1 Definitionsp. 19
2.2.2 Closure and Semi-continuous Functionsp. 22
2.2.3 Weak Topologies and Dual Spacesp. 24
2.2.4 Separable Spacesp. 28
2.2.5 Dual of Banach Spaces and Reflexivityp. 32
2.2.6 Closure and Continuity of Convex Functionsp. 37
2.3 [Gamma]-Regularization and Continuous Affine Functionsp. 39
3 A Brief Overview of Sobolev Spacesp. 43
3.1 Tools and Definitionsp. 43
3.1.1 Definitions and Notationsp. 43
3.1.2 Some Fundamental Inequalities and Convergence Criteriap. 45
3.1.3 Definition of Sobolev Spacesp. 47
3.2 Some Properties of Sobolev Spacesp. 49
3.2.1 Density Resultsp. 49
3.2.2 Embedding Resultsp. 49
3.2.3 Compactness Resultsp. 50
3.2.4 Trace Results and Green's Formulap. 50
3.2.5 Truncation Operationsp. 53
3.2.6 Interpolation Theoryp. 54
4 Legendre-Fenchel Transformation and Dualityp. 57
4.1 Fenchel Conjugate Functionsp. 57
4.1.1 Definitions and Propertiesp. 57
4.1.2 Examplesp. 61
4.2 Subdifferentials and Superdifferentials of Extended-value Functionsp. 62
4.2.1 Definition and Characterizationp. 62
4.2.2 General Casep. 66
4.2.3 Calculus Rules with Subdifferentialsp. 68
4.2.4 Connection with Directional Derivativep. 70
4.3 Applications of the Dualityp. 77
4.3.1 Fundamental Equationsp. 78
4.3.2 Duality Mapping in Banach Spacesp. 79
4.3.3 Duality and Fundamental Equationsp. 82
4.3.4 Euler-Lagrange Equation and the Non-linear Operatorp. 86
4.3.5 Minimization of Convex Functionsp. 93
4.3.6 General Boundary Value Problemsp. 95
5 Lagrange Duality Theoryp. 99
5.1 Frenchel-Rockafellar Duality in Optimizationp. 99
5.1.1 Primal and Dual Problemsp. 100
5.1.2 Normal and Stability Problemsp. 103
5.1.3 Optimality Conditions and Existencep. 106
5.1.4 Bidual Problem and Duality in Variational Inequalitiesp. 107
5.2 Lagrange Dualityp. 108
5.2.1 Definitions and Critical Points of Lagrangiansp. 108
5.2.2 Lagrangian Duality and Saddle Pointsp. 113
5.2.3 Application and Boundary-value Problemsp. 116
5.3 Minimax Dualityp. 126
5.3.1 Motivationp. 126
5.3.2 Saddle Point and Propertiesp. 127
5.3.3 Banach Spaces and Saddle Pointsp. 131
5.3.4 Connection with Duality and Applicationp. 140
5.3.5 Ky Fan's Minimax Inequality and Non-potential Operatorsp. 142
5.4 Duality and Parametric Variational Problemsp. 147
5.4.1 Abstract Frameworkp. 147
5.4.2 Geometrically Non-linear Lagrangian Representationp. 151
Part II General Results and Concepts on Robust and Optimal Control Theory for Evolutive Systems
6 Studied Systems and General Resultsp. 163
6.1 Hypotheses and Propertiesp. 163
6.2 Evolution Problems, Existence and Stability Resultsp. 166
6.3 Regularity Resultsp. 171
6.4 Examples of Operators and Spacesp. 177
6.4.1 Dirichlet Boundary Conditionp. 177
6.4.2 Neumann Boundary Conditionp. 178
6.4.3 Robin Boundary Conditionp. 179
6.4.4 Non-homogeneous Neumann and Dirichlet Boundary Conditionsp. 180
7 Optimal Control Problemsp. 183
7.1 Introductionp. 183
7.2 Basic Frameworkp. 184
7.3 Linear Control Problemsp. 187
7.3.1 Position of the Problem, Existence and Uniqueness of the Optimal Solutionp. 187
7.3.2 Optimality Conditions and Identification of the Gradientsp. 188
7.4 Examples of Controls and Observationsp. 193
7.4.1 Boundary Controlp. 194
7.4.2 Pointwise Observationsp. 195
7.4.3 Pointwise Controlsp. 198
7.4.4 Boundary Controls and Boundary Observationsp. 199
7.4.5 Data Assimilation Problem and Initial Condition Controlp. 201
7.5 Parameter Estimations and Bilinear Control Problemsp. 202
7.5.1 State Problemp. 202
7.5.2 Existence of Optimal Solutionsp. 203
7.5.3 First-order Optimality Conditionsp. 204
7.6 Non-linear Control for Non-linear Evolutive PDE Problemsp. 208
7.6.1 State Problem and Assumptionsp. 208
7.6.2 Existence and Uniqueness of the Solutionp. 210
7.6.3 The Control Frameworkp. 211
7.6.4 Initial Condition Controlp. 219
7.6.5 Examplep. 224
8 Stabilization and Robust Control Problemp. 227
8.1 Motivation and Objectivesp. 227
8.2 Basic Frameworkp. 229
8.3 Linear Robust Control Problemsp. 232
8.3.1 Position of the Problem, and the Existence and Uniqueness of the Optimal Solutionp. 232
8.3.2 Optimality Conditions and Identification of the Gradientsp. 234
8.4 Examples of Controls, Disturbances and Observationsp. 240
8.4.1 Boundary Disturbancep. 242
8.4.2 Pointwise Observationsp. 243
8.4.3 Pointwise Controls and Pointwise Disturbancesp. 246
8.4.4 Boundary Controls and Boundary Observationsp. 247
8.4.5 Data Assimilation Problem and Initial Condition Controlp. 250
8.5 Bilinear-type Robust Control Problemsp. 253
8.5.1 State Problemp. 254
8.5.2 Differentiability of the Mapping Solutionp. 257
8.5.3 Existence of an Optimal Solutionp. 260
8.5.4 First-order Necessary Conditionsp. 262
8.5.5 Other Situations and Applicationsp. 263
8.6 Non-linear Robust Control for Non-linear Evolutive Problemsp. 266
8.6.1 State Equationsp. 267
8.6.2 The Perturbation Problemp. 268
8.6.3 The Control Frameworkp. 268
8.6.4 Initial Condition Controlp. 278
8.6.5 A Remark on the Robust Boundary Control Problemp. 287
8.6.6 Contraction Mapping and Fixed-point Formulationp. 290
8.7 Non-linear Time-varying Delay Systemsp. 296
8.7.1 Mathematical Settingp. 296
8.7.2 Existence and Uniqueness of the Solutionp. 298
8.7.3 The Control Frameworkp. 304
8.7.4 Remarks on Time-varying Delays and Control in the Boundary Conditionsp. 314
9 Remarks on Numerical Techniquesp. 319
9.1 Introduction and Studied Problemp. 319
9.2 Continuous Casep. 321
9.2.1 Gradient Algorithmp. 321
9.2.2 Conjugate Gradient Algorithmp. 322
9.2.3 Lagrange-Newton Methodp. 324
9.3 Discrete Problemp. 328
9.3.1 Approximation of Robust Control Problemsp. 328
9.3.2 Discrete Gradient Algorithmp. 329
9.3.3 Multi-grid Gradient Methodp. 331
Part III Applications in the Biological and Physical Sciences: Modeling and Stabilization
10 Vortex Dynamics in Superconductors and Ginzburg-Landau-type Modelsp. 339
10.1 Introductionp. 339
10.1.1 Assumptions and Notationp. 343
10.1.2 Preliminary Resultsp. 345
10.2 Existence and Uniqueness of the Solution of the MTDGL Modelp. 345
10.3 The Perturbation Problemp. 346
10.3.1 Formulation of the Perturbation Problemp. 346
10.3.2 Existence and Stability Resultsp. 347
10.4 Differentiability of the Operator Solutionp. 348
10.5 Robust Control Problemsp. 350
10.5.1 Control in the External Magnetic Fieldp. 350
10.5.2 Control in the Initial Condition of the Vector Potentialp. 360
11 Multi-scale Modeling of Alloy Solidification and Phase-field Modelp. 369
11.1 Introductionp. 370
11.1.1 Assumptions and Notationsp. 374
11.1.2 Preliminary Resultsp. 375
11.2 Existence, Uniqueness and a Maximum Principlep. 376
11.2.1 Existence and Uniqueness Resultsp. 376
11.2.2 A Maximum Principlep. 376
11.3 The Perturbation Problemp. 378
11.4 Differentiability of the Operator Solutionp. 380
11.5 Robust Control Problemsp. 382
11.5.1 Disturbance in the Forcing of the Phase-field Parameterp. 382
11.5.2 Distributed Disturbance in the Initial Condition of the Phase-field Variablep. 389
12 Large-scale Ocean in the Climate Systemp. 395
12.1 Introduction and Formulation of the Problemp. 395
12.1.1 Motivationp. 395
12.1.2 Primitive Equations and Study Domainp. 397
12.2 The Perturbation Problemp. 400
12.2.1 Preliminary Results and Weak Formulationsp. 400
12.2.2 Existence, Uniqueness and Regularity of the Solutionp. 405
12.2.3 Comments on the Asymptotic Behaviorp. 408
12.3 Robust Control Problemsp. 410
12.3.1 Differentiability of the Operator Solutionp. 411
12.3.2 Existence of an Optimal Solutionp. 413
12.3.3 Optimality Conditionsp. 415
12.4 Primitive Ocean Equations with Vertical Viscosityp. 418
13 Heat Transfer Laws on Temperature Distribution in Biological Tissuesp. 427
13.1 Introductionp. 427
13.1.1 Motivation and Statement of the Problemp. 427
13.1.2 Thermal Damage Calculationsp. 429
13.1.3 Background and Motivationp. 430
13.1.4 Assumptions and Notationsp. 431
13.2 The State Systemp. 432
13.2.1 Existence and Stability Resultsp. 432
13.2.2 A Maximum Principlep. 436
13.3 The Perturbation Problemp. 437
13.3.1 Formulation of the Perturbation Problemp. 437
13.3.2 Existence and Stability Resultsp. 438
13.4 Robust Control Problemsp. 439
13.4.1 Formulation of the Control Problem and Differentiabilityp. 439
13.4.2 Existence of an Optimal Solutionp. 442
13.4.3 Optimality Conditionsp. 443
13.5 Other Situationsp. 445
13.5.1 Data Assimilationp. 445
13.5.2 Boundary Disturbancep. 446
13.5.3 Finite Number of Measurementsp. 447
13.5.4 Union of a Finite Number of Subdomainsp. 448
14 Lotka-Volterra-type Systems with Logistic Time-varying Delaysp. 451
14.1 Introduction and Mathematical Settingp. 451
14.1.1 Motivationp. 451
14.1.2 Studied Equationsp. 452
14.2 Existence and Uniqueness of the Solutionp. 454
14.3 The Perturbation Problemp. 459
14.4 Robust Control Problemsp. 460
14.4.1 Formulation of the Control Problem and Differentiabilityp. 460
14.4.2 Existence of an Optimal Solutionp. 462
14.4.3 Optimality Conditionsp. 464
14.5 Other Situationsp. 468
14.5.1 Disturbance in the Parameter Function pp. 468
14.5.2 Remarks on Boundary Control and Habitat Hostilityp. 470
15 Other Systemsp. 473
15.1 Micropolar Fluids and Blood Pressurep. 473
15.1.1 Introduction and Mathematical Settingp. 473
15.1.2 Fluctuation and Robust Regulation of the Blood Pressurep. 475
15.2 Semiconductor Melt Flow in Crystal Growthp. 478
15.2.1 Introduction and Mathematical Settingp. 478
15.2.2 Fluctuation and Robust Regulation of the Melt Flow Motionp. 479
Referencesp. 483
Indexp. 499
Go to:Top of Page