Skip to:Content
|
Bottom
Cover image for Noble gas detectors
Title:
Noble gas detectors
Publication Information:
Hoboken, NJ : Wiley-VCH Verlag, 2006
ISBN:
9783527405978
Added Author:

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010108435 QC787.C6 N62 2006 Open Access Book Book
Searching...

On Order

Summary

Summary

This book discusses the physical properties of noble fluids, operational principles of detectors based on these media, and the best technical solutions to the design of these detectors. Essential attention is given to detector technology: purification methods and monitoring of purity, information readout methods, electronics, detection of hard ultra-violet light emission, selection of materials, cryogenics etc.
The book is mostly addressed to physicists and graduate students involved in the preparation of fundamental next generation experiments, nuclear engineers developing instrumentation for national nuclear security and for monitoring nuclear materials.


Author Notes

Elena Aprile assistant and research associate at the University of Geneva and in Harvard
Alexander I. Bolozdynya worked for the Nuclear Medicine Division of Siemens Medical Systems, for Constellation Technology Corporation and for Case Western Reserve University where he is currently holding a position as Senior Scientist
Aleksey E. Bolotnikov is an Associate Scientist at the Brookhaven National Laboratory in Upton, New York
Tadayoshi Doke is a Professor Emeritus of Waseda University, Japan


Table of Contents

Forewordp. V
Prefacep. XIII
Acknowledgementsp. XV
1 Introductionp. 1
1.1 Units and Definitionsp. 7
1.2 Brief History of Noble Gas Detectorsp. 2
2 Noble Fluids as Detector Mediap. 7
2.1 Physical Properties of Dense Noble Gasesp. 7
2.2 Energy Dissipation in Noble Gasesp. 10
2.3 Ionization Clusters and Principal Limitations on Position Resolution of Noble Gas Detectorsp. 12
2.4 Ionization and Recombinationp. 15
2.4.1 Jaffa Model of Recombinationp. 18
2.4.2 Onsager Model of Recombinationp. 20
2.4.3 Influence of l[delta]-Electronsp. 22
2.5 Principal Limitations for Energy Resolutionp. 23
2.6 Detection of Nuclear Recoilsp. 29
2.7 Detection of High-Energy Particlesp. 30
3 Elementary Processes Affecting Generation of Signalsp. 33
3.1 Collection of Charge Carriersp. 33
3.1.1 Charge Carrier Drift in Gases Under High Pressurep. 34
3.1.1.1 Drift of Electrons in Gasesp. 35
3.1.1.2 Drift of Ions in Gasesp. 39
3.1.2 Drift of Charge Carriers in Condensed Phasesp. 41
3.1.2.1 Drift of Electrons in Condensed Phasesp. 41
3.1.2.2 Drift of Ions and Holes in Condensed Noble Gasesp. 49
3.1.3 Charge Carrier Trappingp. 52
3.1.3.1 Electron Attachment in Liquidsp. 52
3.1.3.2 Charge Trapping in Solidsp. 55
3.2 Electron Multiplication and Electroluminescencep. 56
3.3 Charge Carrier Transfer at Interfacesp. 60
3.3.1 Quasifree Electron Emissionp. 60
3.3.1.1 Thermal Electron Emissionp. 61
3.3.1.2 Hot Electron Emissionp. 62
3.3.1.3 Transition of Quasifree Electrons Along Interfacep. 64
3.3.2 Electron Emission From Localized Statesp. 66
3.3.3 Transitions Between Different Mediap. 67
3.3.4 Ion Emission from Nonpolar Dielectricsp. 69
3.3.5 Electron Emission into Nonpolar Dielectricsp. 70
3.3.5.1 Electron Emission From Cathodesp. 70
3.3.5.2 Electron Injection Through the Free Interfacep. 70
3.4 Properties of Noble Gas Scintillatorsp. 71
3.4.1 Primary Processesp. 71
3.4.2 Emission Spectrap. 72
3.4.2.1 Emission Spectra of Gasesp. 74
3.4.2.2 Emission Spectra of Liquids and Solidsp. 75
3.4.3 Absorption and Scatteringp. 81
3.4.3.1 Self-Absorptionp. 81
3.4.3.2 Impurity Absorptionp. 82
3.4.3.3 Scatteringp. 85
3.4.4 Scintillation Light Yieldp. 86
3.4.5 Refractive Indexp. 92
3.4.6 Decay Timesp. 95
3.4.6.1 Decay Times of Gasesp. 96
3.4.6.2 Decay Times of Liquids and Solidsp. 96
4 Scintillation Detectorsp. 107
4.1 High-Pressure Noble Gas Scintillation Detectorsp. 107
4.1.1 Single-Channel Gas Scintillation Detectorsp. 108
4.1.2 Multichannel Gas Scintillation Detectorsp. 110
4.2 Condensed Noble Gas Scintillation Detectorsp. 111
4.2.1 Scintillation Detectors Using Liquid Helium and Condensed Neonp. 111
4.2.2 Scintillation Detectors Using Liquid Argon, Krypton and Xenonp. 116
4.2.2.1 Single-Channel Noble Liquid Scintillation Detectorsp. 116
4.2.2.2 Multichannel Noble Liquid Scintillation Detectorsp. 120
4.3 Development of Scintillation Calorimetersp. 125
4.3.1 Granulated Scintillation Calorimetersp. 127
4.3.1.1 UV Light-Collecting Cellsp. 127
4.3.1.2 Light-Collecting Cells with Wavelength Shifterp. 129
4.3.1.3 Scintillation Calorimeter Liderp. 130
4.3.2 Barrel Scintillation Calorimetersp. 133
4.4 Time-of-Flight Scintillation Detectorsp. 136
5 Ionization Detectorsp. 143
5.1 Generation of Induction Chargep. 143
5.2 Diode Ionization Chamberp. 148
5.3 Triode Ionization Chamberp. 151
5.4 Multilayer Ionization Chamberp. 157
5.5 Ionization Chamber with Virtual Frisch Gridp. 161
5.6 Time Projection Chamber with Scintillation Triggerp. 164
5.7 Use of Both Ionization and Scintillation Signalsp. 168
6 Proportional Scintillation Detectorsp. 173
6.1 Gaseous EL Detectors with Parallel Plate Electrode Structurep. 176
6.1.1 Gas Proportional Scintillation Countersp. 178
6.1.1.1 GPSCs with PMT Readoutp. 178
6.1.1.2 GPSC with Photodiode Readoutp. 180
6.1.1.3 GPSC with Open Photocathode Readoutp. 183
6.1.2 High-Pressure Electroluminescence Detectorsp. 188
6.1.3 Imaging Electroluminescence Detectorsp. 190
6.1.3.1 Analog Imaging Electroluminescence Detectorsp. 191
6.1.3.2 Digital Imagingp. 195
6.2 High-Pressure Xenon Electroluminescence Detectors with Nonuniform Electric Fieldp. 206
6.2.1 Cylindrical Proportional Scintillation Counters and Drift Chambersp. 206
6.2.2 Gas Scintillation Proportional Counters with Spherical Electrical Fieldp. 212
6.3 Multilayer Electroluminescence Chamberp. 213
6.4 Liquid Electroluminescence Detectorsp. 215
7 Two-Phase Electron Emission Detectorsp. 217
7.1 Emission Ionization Chambersp. 218
7.2 Emission Proportional Chambersp. 220
7.3 Emission Spark Chambersp. 224
7.4 Emission Electroluminescence Detectorsp. 226
7.5 Vacuum Emission Detectorsp. 234
7.6 Further Developments of Two-Phase Detectorsp. 236
8 Technology of Noble Gas Detectorsp. 239
8.1 Selection of Materials and Mechanical Designp. 239
8.1.1 Metalsp. 239
8.1.1.1 Construction Metalsp. 239
8.1.1.2 Sealingsp. 240
8.1.2 Insulatorsp. 241
8.1.3 Feedthroughsp. 242
8.1.3.1 Electrical Feedthroughsp. 242
8.1.3.2 Optical Fiber Feedthroughsp. 243
8.1.3.3 Motion Feedthroughsp. 244
8.1.4 Electrodesp. 245
8.1.4.1 Active Cathodesp. 245
8.1.4.2 Gridsp. 245
8.1.4.3 Multilayer Structuresp. 247
8.1.4.4 Amplifying Electrode Structuresp. 247
8.1.5 Viewports and Windowsp. 248
8.1.5.1 Materialsp. 249
8.1.5.2 Optical Windows for High-Pressure Detectorsp. 250
8.1.5.3 Glass Machiningp. 250
8.1.6 High-Pressure Vesselsp. 252
8.1.7 Cryogenicsp. 252
8.2 Processing High Purity Noble Gasesp. 254
8.2.1 Pretreatmentp. 254
8.2.2 Pumpingp. 255
8.2.3 Bakingp. 255
8.2.4 Handlingp. 256
8.3 Purificationp. 257
8.3.1 Impuritiesp. 257
8.3.2 Chemical Methods of Purificationp. 257
8.3.3 Electron Drift Purification Methodp. 258
8.3.4 Spark Purificationp. 259
8.3.5 Separation of Noble Gasesp. 259
8.3.6 Circulationp. 261
8.4 Monitoring the Working Mediap. 262
8.4.1 Electron Lifetimep. 262
8.4.2 Optical Transparencyp. 266
8.4.3 Mass and Position of Free Surfacep. 267
8.4.4 Temperature, Pressure, and Densityp. 267
8.5 UV Light Collectionp. 269
8.5.1 Reflectorsp. 269
8.5.2 Wavelength Shiftersp. 270
8.5.2.1 Wavelength Shifters Dissolved in Noble Gasesp. 270
8.5.2.2 Solid Wavelength Shiftersp. 271
8.6 Photosensorsp. 272
8.6.1 Photomultipliersp. 272
8.6.1.1 Low Temperaturep. 272
8.6.1.2 PMTs for High Pressurep. 274
8.6.2 Semiconductor Photodiodesp. 274
8.6.3 Open Photocathodesp. 276
9 Applicationsp. 277
9.1 Astronomyp. 277
9.1.1 Instrumentation for X-ray Astronomyp. 277
9.1.1.1 Gas Imaging Spectrometers On-Board ASCAp. 277
9.1.1.2 High-Pressure Gas Scintillation Proportional Counter at BeppoSAXp. 279
9.1.1.3 High-Pressure Gas Scintillation Proportional Counter On-Board HEROp. 281
9.1.2 Instrumentation for Gamma Ray Astronomyp. 283
9.1.2.1 KSENIA On-Board MIR Orbital Stationp. 283
9.1.2.2 LXeGRIT Balloon-Borne Compton Telescopep. 284
9.2 Low-Background Experimentsp. 289
9.2.1 Direct Detection of Particle Dark Matterp. 289
9.2.2 Neutrino Detectorsp. 294
9.2.3 Double Beta and Double Positron Decay Searchp. 297
9.2.3.1 Experiments with Active Targetsp. 297
9.2.3.2 Experiment with a Passive Targetp. 298
9.2.3.3 Double Positron Decay Experimentsp. 300
9.3 High-Energy Physics: Calorimetersp. 304
9.3.1 Ionization Calorimetersp. 304
9.3.1.1 Liquid Argon Calorimetersp. 304
9.3.1.2 Liquid Krypton Calorimetersp. 307
9.3.1.3 Xenon Calorimetersp. 309
9.3.2 Scintillation Calorimetersp. 311
9.4 Medical Imagingp. 312
9.4.1 X-ray Imagingp. 315
9.4.1.1 Analog X-ray Imagingp. 316
9.4.1.2 Digital X-ray Imagingp. 316
9.4.2 Single-Photon Emission Computing Tomography (SPECT)p. 318
9.4.2.1 Liquid Xenon Detectors for SPECTp. 318
9.4.2.2 High-Pressure Noble Gas Detectors for SPECTp. 319
9.4.3 Positron Emission Tomography (PET)p. 319
9.4.3.1 Liquid Xenon TPC with a Scintillation Triggerp. 320
9.4.3.2 Liquid Xenon Scintillation Time-of-Flight PETp. 322
Referencesp. 325
Indexp. 343
Go to:Top of Page