Skip to:Content
|
Bottom
Cover image for Membrane technology in the chemical industry
Title:
Membrane technology in the chemical industry
Edition:
2nd. rev. and extended ed.
Publication Information:
Weinheim : Wiley-VCH Verlag, 2006
ISBN:
9783527313167

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010113149 TP159.M4 M455 2006 Open Access Book Book
Searching...
Searching...
30000010167450 TP159.M4 M455 2006 Open Access Book Book
Searching...
Searching...
30000010167437 TP159.M4 M455 2006 Open Access Book Book
Searching...

On Order

Summary

Summary

Membrane Technology - a clean and energy saving alternative to traditional/conventional processes.

Developed from a useful laboratory technique to a commercial separation technology, today it has widespread and rapidly expanding use in the chemical industry. It has established applications in areas such as hydrogen separation and recovery of organic vapors from process gas streams, and selective transport of organic solvents, and it is opening new perspectives for catalytic conversion in membrane reactors. Membrane technology provides a unique solution for industrial waste treatment and for controlled production of valuable chemicals.

This book outlines several established applications of membranes in the chemical industry, reviews the available membranes and membrane processes for the field, and discusses the huge potential of this technology in chemical processes.

Each chapter has been written by an international leading expert with extensive industrial experience in the field.


Author Notes

S. P. Nunes is currently head of Polymer Technology at GKSS Research Center Geesthacht in Germany. She has been working on the development of polymeric materials and membranes for different applications for over 20 years, with over 65 papers in international journals and 100 contributions to congresses. In the last four years she has dedicated her time to the membrane development for fuel cells, coordinating German and European projects in the field. Prior to this, she was Associate Professor at the University of Campinas, Brazil, a researcher at Pirelli, and Humboldt fellow at the University of Mainz, Germany.

K.-V. Peinemann is currently Senior Scientist at GKSS Research Center Geesthacht in Germany and has worked in the field of membrane science and technology for 25 years. He has organized numerous international workshops on membrane formation and has been lecturing since 1995 at the University of Hanover. From 2002 to 2004, Professor Peinemann served as President of the European Membrane Society and is co-founder of the membrane company GMT Membrantechnik in Rheinfelden, Germany. He has published some 80 papers in international journals and holds 15 membrane-related patents.


Table of Contents

K. Ohlrogge and K. SturkenD.J. StookeyH.E.A. BruschkeA. G. Livingston and L. G. Peeva and P. SilvaM. F. Kemmere and J. T. F. KeurentjesT. A. Davis and V. D. Grebenyuk and O. GrebenyukR. W. Baker
Part I Membrane Materials and Membrane PreparationS. P. Nunes and K.-V. Peinemann
1 Introductionp. 3
2 Membrane Marketp. 5
3 Membrane Preparationp. 9
3.1 Phase Inversionp. 10
4 Presently Available Membranes for Liquid Separationp. 15
4.1 Membranes for Reverse Osmosisp. 15
4.2 Membranes for Nanofiltrationp. 18
4.2.1 Solvent-resistant Membranes for Nanofiltrationp. 20
4.2.2 NF Membranes Stable in Extreme pH Conditionsp. 22
4.3 Membranes for Ultrafiltrationp. 23
4.3.1 Polysulfone and Polyethersulfonep. 23
4.3.2 Poly(vinylidene fluoride)p. 26
4.3.3 Polyetherimidep. 28
4.3.4 Polyacrylonitrilep. 30
4.3.5 Cellulosep. 32
4.3.6 Solvent-resistant Membranes for Ultrafiltrationp. 32
4.4 Membranes for Microfiltrationp. 34
4.4.1 Polypropylene and Polyethylenep. 34
4.4.2 Poly(tetrafluorethylene)p. 36
4.4.3 Polycarbonate and Poly(ethylene terephthalate)p. 37
5 Surface Modification of Membranesp. 39
5.1 Chemical Oxidationp. 39
5.2 Plasma Treatmentp. 40
5.3 Classical Organic Reactionsp. 41
5.4 Polymer Graftingp. 41
6 Membranes for Fuel Cellsp. 45
6.1 Perfluorinated Membranesp. 46
6.2 Nonfluorinated Membranesp. 48
6.3 Polymer Membranes for High Temperaturesp. 51
6.4 Organic-Inorganic Membranes for Fuel Cellsp. 52
7 Gas Separation with Membranesp. 53
7.1 Introductionp. 53
7.2 Materials and Transport Mechanismsp. 53
7.2.1 Organic Polymersp. 55
7.2.2 Backgroundp. 55
7.2.3 Polymers for Commercial Gas-separation Membranesp. 57
7.2.4 Ultrahigh Free Volume Polymersp. 58
7.2.5 Inorganic Materials for Gas-separation Membranesp. 62
7.2.6 Carbon Membranesp. 62
7.2.7 Perovskite-type Oxide Membranes for Air Separationp. 64
7.2.8 Mixed-matrix Membranesp. 67
7.3 Basic Process Designp. 69
Acknowledgmentsp. 75
Referencesp. 75
Part II Current Application and Perspectives
1 The Separation of Organic Vapors from Gas Streams by Means of Membranesp. 93
Summaryp. 93
1.1 Introductionp. 94
1.2 Historical Backgroundp. 94
1.3 Membranes for Organic Vapor Separationp. 96
1.3.1 Principlesp. 96
1.3.2 Selectivityp. 96
1.3.3 Temperature and Pressurep. 97
1.3.4 Membrane Modulesp. 98
1.4 Applicationsp. 100
1.4.1 Design Criteriap. 100
1.4.2 Off-gas and Process Gas Treatmentp. 102
1.4.2.1 Gasoline Vapor Recoveryp. 103
1.4.2.2 Polyolefin Production Processesp. 109
1.5 Applications at the Threshold of Commercializationp. 111
1.5.1 Emission Control at Petrol Stationsp. 111
1.5.2 Natural Gas Treatmentp. 113
1.5.3 Hydrogen/Hydrocarbon Separationp. 114
1.6 Conclusions and Outlookp. 116
Referencesp. 116
2 Gas-separation Membrane Applicationsp. 110
2.1 Introductionp. 119
2.2 Membrane Application Developmentp. 120
2.2.1 Membrane Selectionp. 120
2.2.2 Membrane Formp. 123
2.2.3 Membrane Module Geometryp. 125
2.2.4 Compatible Sealing Materialsp. 129
2.2.5 Module Manufacturep. 130
2.2.6 Pilot or Field Demonstrationp. 130
2.2.7 Process Designp. 132
2.2.8 Membrane Systemp. 133
2.2.9 Beta Sitep. 135
2.2.10 Cost/Performancep. 136
2.3 Commercial Gas-separation Membrane Applicationsp. 136
2.3.1 Hydrogen Separationsp. 137
2.3.2 Helium Separationsp. 140
2.3.3 Nitrogen Generationp. 140
2.3.4 Acid Gas-Separationsp. 143
2.3.5 Gas Dehydrationp. 144
2.4 Developing Membrane Applicationsp. 146
2.4.1 Oxygen and Oxygen-enriched Airp. 146
2.4.2 Nitrogen Rejection from Natural Gasp. 147
2.4.3 Nitrogen-enriched Air (NEA)p. 147
Referencesp. 147
3 State-of-the-Art of Pervaporation Processes in the Chemical Industryp. 151
3.1 Introductionp. 151
3.2 Principles and Calculationsp. 153
3.2.1 Definitionsp. 153
3.2.2 Calculationp. 155
3.2.3 Permeate-side Conditionsp. 163
3.2.4 Transport Resistancesp. 166
3.2.5 Principles of Pervaporationp. 168
3.2.6 Principles of Vapor Permeationp. 171
3.3 Membranesp. 175
3.3.1 Characterization of Membranesp. 180
3.4 Modulesp. 182
3.4.1 Plate Modulesp. 183
3.4.2 Spiral-wound Modulesp. 185
3.4.3 "Cushion" Modulep. 185
3.4.4 Tubular Modulesp. 186
3.4.5 Other Modulesp. 187
3.5 Applicationsp. 188
3.5.1 Organophilic Membranesp. 188
3.5.2 Hydrophilic Membranesp. 189
3.5.2.1 Pervaporationp. 189
3.5.2.2 Vapor Permeationp. 191
3.5.3 Removal of Water from Reaction Mixturesp. 194
3.5.4 Organic-Organic Separationp. 197
3.6 Conclusionp. 200
Referencesp. 200
4 Organic Solvent Nanofiltrationp. 203
Summaryp. 203
4.1 Current Applications and Potentialp. 203
4.2 Theoretical Background to Transport Processesp. 205
4.2.1 Pore-flow Modelp. 205
4.2.2 Solution-Diffusion Modelp. 206
4.2.3 Models Combining Membrane Transport with the Film Theory of Mass Transferp. 207
4.3 Transport of Solvent Mixturesp. 210
4.3.1 Experimentalp. 210
4.3.1.1 Filtration Equipment and Experimental Measurementsp. 210
4.3.2 Results for Binary Solvent Fluxesp. 210
4.4 Concentration Polarization and Osmotic Pressurep. 213
4.4.1 Experimentalp. 213
4.4.2 Results for Concentration Polarization and Osmotic Pressurep. 214
4.4.2.1 Parameter Estimationp. 214
4.4.2.2 Nanofiltration of Docosane-Toluene Solutionsp. 216
4.4.2.3 Nanofiltration of TOABr-Toluene Solutionsp. 219
4.5 Conclusionsp. 224
Nomenclaturep. 225
Greek lettersp. 225
Subscriptsp. 226
Referencesp. 226
5 Industrial Membrane Reactorsp. 229
5.1 Introductionp. 229
5.2 Membrane Functions in Reactorsp. 232
5.2.1 Controlled Introduction of Reactantsp. 232
5.2.2 Separation of Productsp. 238
5.2.3 Catalyst Retentionp. 241
5.3 Applicationsp. 242
5.3.1 Pervaporation-assisted Esterificationp. 242
5.3.2 Large-scale Dehydrogenations with Inorganic Membranesp. 248
5.3.3 OTM Syngas Processp. 250
5.3.4 Membrane Recycle Reactor for the Acylase Processp. 251
5.3.5 Membrane Extraction Integrated Systemsp. 253
5.4 Concluding Remarks and Outlook to the Futurep. 254
Referencesp. 255
6 Electro membrane Processesp. 259
6.1 Ion-exchange Membranesp. 259
6.2 Ion-exchange Membrane Propertiesp. 262
6.2.1 Swellingp. 262
6.2.2 Electrical Conductivityp. 263
6.2.3 Electrochemical Performancep. 267
6.2.4 Diffusion Permeabilityp. 268
6.2.5 Hydraulic Permeabilityp. 269
6.2.6 Osmotic Permeabilityp. 269
6.2.7 Electroosmotic Permeabilityp. 270
6.2.8 Polarizationp. 271
6.2.9 Chemical and Radiation Stabilityp. 273
6.3 Electromembrane Process Applicationp. 274
6.3.1 Electrodialysisp. 274
6.3.2 Electrodeionizationp. 280
6.3.3 Electrochemical Regeneration of Ion-exchange Resinp. 282
6.3.4 Synthesis of New Substances without Electrode Reaction Participation: Bipolar-membrane Applicationsp. 283
6.3.5 Isolation of Chemical Substances from Dilute Solutionsp. 285
6.3.6 Electrodialysis Applications for Chemical-solution Desalinationp. 285
6.4 Electrochemical Processing with Membranesp. 286
6.4.1 Electrochemistryp. 286
6.4.2 Chlor-alkali Industryp. 291
6.4.3 Perfluorinated Membranesp. 291
6.4.4 Process Conditionsp. 293
6.4.5 Zero-gap Electrode Configurationsp. 294
6.4.6 Other Electrolytic Processesp. 295
6.4.7 Fuel Cellsp. 297
6.4.8 Electroorganic Synthesisp. 299
6.4.9 Electrochemical Oxidation of Organic Wastesp. 300
Acknowledgmentsp. 300
List of Symbolsp. 300
Referencesp. 301
7 Membrane Technology in the Chemical Industry: Future Directionsp. 305
7.1 The Past: Basis for Current Membrane Technologyp. 305
7.1.1 Ultrathin Membranesp. 305
7.1.2 Membrane Modulesp. 306
7.1.3 Membrane Selectivityp. 308
7.2 The Present: Current Status and Potential of the Membrane Industryp. 309
7.2.1 Reverse Osmosisp. 309
7.2.2 Ultrafiltrationp. 313
7.2.3 Microfiltrationp. 314
7.2.4 Gas Separationp. 315
7.2.4.1 Refinery Hydrogen Applicationsp. 317
7.2.4.2 Nitrogen (and Oxygen) Separation from Airp. 319
7.2.4.3 Natural Gas Separationsp. 323
7.2.4.4 Vapor/Gas, Vapor/Vapor Separationsp. 326
7.2.5 Pervaporationp. 329
7.2.6 Ion-conducting Membranesp. 330
7.3 The Future: Predictions for 2020p. 332
Referencesp. 333
Subject Indexp. 337
Go to:Top of Page