Skip to:Content
|
Bottom
Cover image for MMIC design : Ga As FETs and HEMTS
Title:
MMIC design : Ga As FETs and HEMTS
Personal Author:
Publication Information:
Boston, Mass : Artech House, 1989
ISBN:
9780890063149

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000001359508 TK7876 L32 1989 Open Access Book Book
Searching...

On Order

Summary

Summary

Detailed information on the principles of integrated design required for successful fabrication of MMIC chips at a reasonable cost. It emphasizes CAD techniques and the effects of material variation. The device modelling techniques presented demonstrate the simulation of overall MMIC chip behavior a


Table of Contents

Forewordp. xi
Acknowledgmentsp. xiii
Notes on nomenclature, acronyms and useful datap. xv
List of symbolsp. xvii
Chapter 1 Introductionp. 1
1.1 Statement of the problemp. 1
1.2 Design approachesp. 2
1.3 A simple examplep. 4
1.4 Yieldp. 7
1.5 The role of device physicsp. 8
Chapter 2 MMIC types and chip functionsp. 11
2.1 Scale of IC fabricationp. 11
2.2 Applicationsp. 12
2.2.1 Civilp. 12
2.2.2 Militaryp. 14
2.3 Chip functionsp. 15
2.4 Example MMICsp. 17
Chapter 3 Overview of passive elementsp. 29
3.1 Introductionp. 29
3.2 Microstriplinep. 30
3.3 Inductorsp. 34
3.4 Capacitorsp. 41
3.5 Resistorsp. 47
3.6 The Lange couplerp. 49
3.7 Other componentsp. 50
3.8 Final remarksp. 52
Chapter 4 PIN and Schottky diodesp. 55
4.1 Introductionp. 55
4.2 Schottky diodesp. 56
4.3 PIN diodesp. 63
4.4 MMIC uses of PIN and Schottky diodesp. 67
Chapter 5 Elementary FET principlesp. 69
5.1 Introductionp. 69
5.2 Review of Si JFET operationp. 70
5.3 Current saturation in the GaAs MESFETp. 77
5.4 Mechanism of current saturation--summaryp. 82
5.5 Essential enhancementsp. 83
5.5.1 Si JFETp. 83
5.5.2 GaAs MESFETp. 84
5.6 Equivalent circuit of the GaAs MESFETp. 85
5.7 Concluding remarksp. 87
Chapter 6 MESFETsp. 91
6.1 Introductionp. 91
6.2 Brief outline of structurep. 91
6.3 Equivalent circuit--physical basisp. 95
6.3.1 Signal delayp. 95
6.3.2 Charge storagep. 99
6.3.3 Current modulationp. 109
6.3.4 Transconductance delayp. 110
6.4 Intrinsic equivalent circuitp. 112
6.4.1 Configurationp. 112
6.4.2 Voltage dependence of the space-charge layer extension, Xp. 116
6.4.3 Gate strip inductance, [script l][subscript g]p. 121
6.4.4 Channel, or intrinsic, resistance, R[subscript i]p. 121
6.4.5 Channel current, I[subscript CH]p. 121
6.4.6 Intrinsic transconductance, g[subscript m0]p. 122
6.4.7 Gate-channel capacitance, C[subscript gc]p. 123
6.4.8 Gate-drain capacitance, C[subscript gd]p. 123
6.4.9 Transconductance delay, [tau][subscript gm]p. 124
6.5 Implications for FET design and usagep. 124
6.6 Output conductance and other microwave effects of substrate currentp. 125
6.7 Effect of surface charge, non-uniform doping and gate recess depthp. 135
6.8 Series parasitic resistances R[subscript s] and R[subscript d] and effect on equivalent circuitp. 138
6.8.1 Source resistance, R[subscript s]p. 139
6.8.2 Drain resistances, R[subscript D] and R[subscript d]p. 142
6.9 Gate resistancep. 145
6.10 Geometric capacitancep. 146
6.11 Via-hole inductancep. 155
6.12 GaAs FET noisep. 156
6.13 Power MMICsp. 163
Chapter 7 High electron mobility transistorsp. 189
7.1 Introductionp. 189
7.2 Energy band line-upp. 190
7.3 Physical basis and structurep. 192
7.4 Practical HEMT structuresp. 196
7.5 Principal equivalent circuit elementsp. 198
7.6 HEMT noisep. 201
7.7 Prospects for HEMT integrationp. 202
Chapter 8 Reverse modeling GaAs MESFETs and HEMTsp. 205
8.1 Introductionp. 205
8.2 Reverse modeling for gate lengthp. 205
8.3 Errors in eqns (8.2) and (8.6)p. 211
8.4 Extension to HEMTsp. 211
8.5 General commentsp. 215
8.6 Reverse modeling for channel dopingp. 218
8.7 Conclusionp. 219
Chapter 9 Design limitsp. 221
9.1 Introductionp. 221
9.2 Limits to small-signal behaviorp. 222
9.2.1 Gain, frequency and voltage, and gate lengthp. 222
9.2.2 Effect of gatewidth, Z[subscript G]p. 225
9.2.3 Input and output reflection coefficientp. 232
9.2.4 Maximum Tunable Gain (MTG), MAG, MSG and MUGp. 242
9.3 Limits to large-signal (power) behaviorp. 248
Chapter 10 FETs in amplifiersp. 259
10.1 Introductionp. 259
10.2 Amplifier topologies and design principlesp. 261
10.2.1 Reactively matched amplifiersp. 263
10.2.2 Design of a two-element matching or gain slope compensation networkp. 268
10.2.3 Lossy matched amplifiersp. 277
10.2.4 Feedback amplifiersp. 279
10.2.5 Distributed amplifiersp. 287
10.2.6 The matrix amplifierp. 300
10.2.7 Balanced amplifiersp. 303
10.3 First trial device synthesisp. 305
10.4 FET synthesis by reverse modelingp. 310
10.5 FET synthesis for distributed power amplifiersp. 312
10.5.1 Power-impedance considerationsp. 313
10.5.2 Frequency considerationsp. 315
10.5.3 FET synthesis--examplep. 316
10.6 Final remarksp. 321
Chapter 11 Computer-aided designp. 325
11.1 Introductionp. 325
11.2 Sensitivity analysis--basisp. 327
11.3 Application of the Monte Carlo method to yield forecastingp. 337
11.4 Uses of yield forecastingp. 343
11.5 FET centeringp. 344
11.6 Longer-term developmentsp. 346
Chapter 12 Future developmentsp. 357
Indexp. 365
Go to:Top of Page