Skip to:Content
|
Bottom
Cover image for Fundamentals of robotic mechanical systems : theory, methods, and algorithms
Title:
Fundamentals of robotic mechanical systems : theory, methods, and algorithms
Personal Author:
Series:
Mechanical engineering
Edition:
3rd ed.
Publication Information:
New York, NY : Springer-Verlag, 2007
Physical Description:
1v + 1 CD-ROM
ISBN:
9780387294124
General Note:
Accompanied by compact disc : CP 10203

Available online version
Subject Term:
Electronic Access:
Fulltext

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010125090 TJ211 A53 2007 Open Access Book Book
Searching...
Searching...
30000010155755 TJ211 A53 2007 Open Access Book Book
Searching...

On Order

Summary

Summary

This volume deals with robots - such as remote manipulators, multifingered hands, walking machines, flight simulators, and machine tools - that rely on mechanical systems to perform their tasks.


Table of Contents

Preface to the Third Editionp. XV
Preface to the First Editionp. XIX
1 An Overview of Robotic Mechanical Systemsp. 1
1.1 Introductionp. 1
1.2 The General Architecture of Robotic Mechanical Systemsp. 3
1.2.1 Types of Robots by Functionp. 6
1.2.2 Types of Robots by Sizep. 7
1.2.3 Types of Robots by Applicationp. 7
1.3 Manipulatorsp. 7
1.3.1 Robotic Armsp. 9
1.3.2 Robotic Handsp. 10
1.4 Motion Generatorsp. 12
1.4.1 Parallel Robotsp. 12
1.4.2 SCARA Systemsp. 16
1.5 Locomotorsp. 17
1.5.1 Legged Robotsp. 17
1.5.2 Wheeled Robotsp. 19
1.6 Swimming Robotsp. 22
1.7 Flying Robotsp. 23
1.8 Exercisesp. 24
2 Mathematical Backgroundp. 27
2.1 Preamblep. 27
2.2 Linear Transformationsp. 28
2.3 Rigid-Body Rotationsp. 33
2.3.1 The Cross-Product Matrixp. 36
2.3.2 The Rotation Matrixp. 38
2.3.3 The Linear Invariants of a 3 x 3 Matrixp. 42
2.3.4 The Linear Invariants of a Rotationp. 43
2.3.5 Examplesp. 45
2.3.6 The Euler-Rodrigues Parametersp. 51
2.4 Composition of Reflections and Rotationsp. 54
2.5 Coordinate Transformations and Homogeneous Coordinatesp. 56
2.5.1 Coordinate Transformations Between Frames with a Common Originp. 56
2.5.2 Coordinate Transformation with Origin Shiftp. 60
2.5.3 Homogeneous Coordinatesp. 62
2.6 Similarity Transformationsp. 65
2.7 Invariance Conceptsp. 71
2.7.1 Applications to Redundant Sensingp. 75
2.8 Exercisesp. 79
3 Fundamentals of Rigid-Body Mechanicsp. 89
3.1 Introductionp. 89
3.2 General Rigid-Body Motion and Its Associated Screwp. 89
3.2.1 The Screw of a Rigid-Body Motionp. 93
3.2.2 The Plucker Coordinates of a Linep. 95
3.2.3 The Pose of a Rigid Bodyp. 98
3.3 Rotation of a Rigid Body About a Fixed Pointp. 102
3.4 General Instantaneous Motion of a Rigid Bodyp. 103
3.4.1 The Instant Screw of a Rigid-Body Motionp. 104
3.4.2 The Twist of a Rigid Bodyp. 107
3.5 Acceleration Analysis of Rigid-Body Motionsp. 110
3.6 Rigid-Body Motion Referred to Moving Coordinate Axesp. 112
3.7 Static Analysis of Rigid Bodiesp. 114
3.8 Dynamics of Rigid Bodiesp. 118
3.9 Exercisesp. 122
4 Geometry of Decoupled Serial Robotsp. 129
4.1 Introductionp. 129
4.2 The Denavit-Hartenberg Notationp. 129
4.3 The Geometric Model of Six-Revolute Manipulatorsp. 138
4.4 The Inverse Displacement Analysis of Decoupled Manipulatorsp. 141
4.4.1 The Positioning Problemp. 142
4.4.2 The Orientation Problemp. 157
4.5 Exercisesp. 162
5 Kinetostatics of Serial Robotsp. 167
5.1 Introductionp. 167
5.2 Velocity Analysis of Serial Manipulatorsp. 168
5.3 Jacobian Evaluationp. 175
5.3.1 Evaluation of Submatrix Ap. 175
5.3.2 Evaluation of Submatrix Bp. 178
5.4 Singularity Analysis of Decoupled Manipulatorsp. 180
5.4.1 Manipulator Workspacep. 182
5.5 Acceleration Analysis of Serial Manipulatorsp. 186
5.6 Static Analysis of Serial Manipulatorsp. 190
5.7 Planar Manipulatorsp. 192
5.7.1 Displacement Analysisp. 193
5.7.2 Velocity Analysisp. 195
5.7.3 Acceleration Analysisp. 198
5.7.4 Static Analysisp. 199
5.8 Kinetostatic Performance Indicesp. 201
5.8.1 Positioning Manipulatorsp. 207
5.8.2 Orienting Manipulatorsp. 210
5.8.3 Positioning and Orienting Manipulatorsp. 211
5.8.4 Computation of the Characteristic Length: Applications to Performance Evaluationp. 218
5.9 Exercisesp. 227
6 Trajectory Planning: Pick-and-Place Operationsp. 233
6.1 Introductionp. 233
6.2 Background on PPOp. 234
6.3 Polynomial Interpolationp. 236
6.3.1 A 3-4-5 Interpolating Polynomialp. 236
6.3.2 A 4-5-6-7 Interpolating Polynomialp. 240
6.4 Cycloidal Motionp. 243
6.5 Trajectories with Via Posesp. 245
6.6 Synthesis of PPO Using Cubic Splinesp. 246
6.7 Exercisesp. 252
7 Dynamics of Serial Robotic Manipulatorsp. 257
7.1 Introductionp. 257
7.2 Inverse vs. Forward Dynamicsp. 257
7.3 Fundamentals of Multibody System Dynamicsp. 259
7.3.1 On Nomenclature and Basic Definitionsp. 259
7.3.2 The Euler-Lagrange Equations of Serial Manipulatorsp. 260
7.3.3 Kane's Equationsp. 268
7.4 Recursive Inverse Dynamicsp. 269
7.4.1 Kinematics Computations: Outward Recursionsp. 269
7.4.2 Dynamics Computations: Inward Recursionsp. 275
7.5 The Natural Orthogonal Complement in Robot Dynamicsp. 280
7.5.1 Derivation of Constraint Equations and Twist-Shape Relationsp. 285
7.5.2 Noninertial Base Linkp. 288
7.6 Manipulator Forward Dynamicsp. 289
7.6.1 Planar Manipulatorsp. 293
7.6.2 Algorithm Complexityp. 306
7.6.3 Simulationp. 310
7.7 Incorporation of Gravity Into the Dynamics Equationsp. 312
7.8 The Modeling of Dissipative Forcesp. 313
7.9 Exercisesp. 316
8 Special Topics in Rigid-Body Kinematicsp. 323
8.1 Introductionp. 323
8.2 Computation of Angular Velocity from Point-Velocity Datap. 324
8.2.1 A Robust Formulationp. 330
8.3 Computation of Angular Acceleration from Point-Acceleration Datap. 331
8.3.1 A Robust Formulationp. 337
8.4 Exercisesp. 339
9 Geometry of General Serial Robotsp. 343
9.1 Introductionp. 343
9.2 The IDP of General Six-Revolute Manipulatorsp. 344
9.2.1 Preliminariesp. 345
9.2.2 Derivation of the Fundamental Closure Equationsp. 349
9.3 The Univariate-Polynomial Approachp. 357
9.3.1 The Raghavan-Roth Procedurep. 357
9.3.2 The Li-Woernle-Hiller Procedurep. 364
9.4 The Bivariate-Equation Approachp. 367
9.4.1 Numerical Conditioning of the Solutionsp. 369
9.5 Implementation of the Solution Methodp. 370
9.6 Computation of the Remaining Joint Anglesp. 371
9.6.1 The Raghavan-Roth Procedurep. 372
9.6.2 The Li-Woernle-Hiller Procedurep. 373
9.6.3 The Bivariate-Equation Approachp. 374
9.7 Examplesp. 375
9.8 Exercisesp. 384
10 Kinematics of Alternative Robotic Mechanical Systemsp. 387
10.1 Introductionp. 387
10.2 Kinematics of Parallel Manipulatorsp. 388
10.2.1 Velocity and Acceleration Analyses of Parallel Manipulatorsp. 401
10.3 Multifingered Handsp. 408
10.4 Walking Machinesp. 413
10.5 Rolling Robotsp. 416
10.5.1 Robots with Conventional Wheelsp. 417
10.5.2 Robots with Omnidirectional Wheelsp. 422
10.6 Exercisesp. 426
11 Trajectory Planning: Continuous-Path Operationsp. 429
11.1 Introductionp. 429
11.2 Curve Geometryp. 430
11.3 Parametric Path Representationp. 435
11.4 Parametric Splines in Trajectory Planningp. 449
11.5 Continuous-Path Trackingp. 454
11.6 Exercisesp. 463
12 Dynamics of Complex Robotic Mechanical Systemsp. 469
12.1 Introductionp. 469
12.2 Classification of Robotic Mechanical Systems with Regard to Dynamicsp. 470
12.3 The Structure of the Dynamics Models of Holonomic Systemsp. 471
12.4 Dynamics of Parallel Manipulatorsp. 474
12.5 Dynamics of Rolling Robotsp. 484
12.5.1 Robots with Conventional Wheelsp. 485
12.5.2 Robots with Omnidirectional Wheelsp. 493
12.6 Exercisesp. 502
A Kinematics of Rotations: A Summaryp. 507
B Numerical Equation-Solvingp. 513
B.1 The Overdetermined Linear Casep. 514
B.1.1 The Numerical Solution of an Overdetermined System of Linear Equationsp. 515
B.2 The Underdetermined Linear Casep. 519
B.2.1 The Numerical Solution of an Underdetermined System of Linear Equationsp. 520
B.3 Nonlinear-Equation Solving: The Determined Casep. 521
B.3.1 The Newton-Raphson Methodp. 522
B.4 Overdetermined Nonlinear Systems of Equationsp. 524
B.4.1 The Newton-Gauss Methodp. 525
B.4.2 Convergence Criterionp. 525
Referencesp. 529
Indexp. 543
Go to:Top of Page