Cover image for Fluid transients in pipeline systems : a guide to the control and suppression of fluid transients in liquids in closed conduits
Title:
Fluid transients in pipeline systems : a guide to the control and suppression of fluid transients in liquids in closed conduits
Personal Author:
Edition:
2nd ed.
Publication Information:
New York, NY : ASME Press, 2004
ISBN:
9780791802106

Available:*

Library
Item Barcode
Call Number
Material Type
Status
Searching...
30000010132425 TJ935 T46 2004 Open Access Book
Searching...

On Order

Summary

Summary

"Highly relevant to design engineers in the process industries, and in particular those practitioners responsible for designing pipeline systems and maintaining their safety and reliability, this text also offers invaluable information to senior and graduate level engineering students with an interest in fluid transient phenomena."--BOOK JACKET.Title Summary field provided by Blackwell North America, Inc. All Rights Reserved


Table of Contents

Acknowledgementsp. xiii
Preface to the First Editionp. xv
Preface to the Second Editionp. xvii
Part 1
1.1 Introductionp. 3
1.1.1 Unacceptable Conditionsp. 3
1.1.2 Causes of Unsteady and Transient flowsp. 4
1.2 Unsteady Flows in Pipes and Tunnelsp. 5
1.2.1 Basic Ideasp. 5
1.2.2 A Simple Examplep. 6
1.2.3 Pressure Wave Reflections and Pipeline Periodp. 8
1.2.4 A 'Rapid' Eventp. 10
1.2.5 Effects of Frictionp. 10
1.2.6 Max-Min Head Envelopesp. 10
1.2.7 Column Separation and Vapour Cavity Formationp. 10
1.2.8 Air and Gas Entrainmentp. 12
1.2.9 Fluid-Structure Interactionp. 13
1.2.10 Water Hammer in Steam Pipelinesp. 13
1.2.11 Mass Oscillation and Rigid Column Behaviourp. 14
1.2.12 Resonance and Auto-oscillationp. 15
1.2.13 Key Points Developed in Sections 1.1 and 1.2p. 17
1.3 Suppression of Fluid Transientsp. 17
1.3.1 Practical Methods of Surge Suppressionp. 18
1.3.2 Direct Actionp. 18
1.3.2.1 Stronger Pipesp. 18
1.3.2.2 Reroutingp. 19
1.3.2.3 Changing Valve Movementsp. 19
1.3.2.4 Avoiding Check Valve Slamp. 20
1.3.2.5 Increasing the Inertia of Pumps and their Motorsp. 22
1.3.2.6 Minimizing Resonance Hazardsp. 23
1.3.3 Diversionary Tacticsp. 24
1.3.3.1 Air Vessels and Air Cushion Surge Chambersp. 25
1.3.3.2 Accumulatorsp. 28
1.3.3.3 Surge Shaftsp. 29
1.3.3.4 One-Way Surge Tanks (Feed Tanks)p. 30
1.3.3.5 Vacuum-Breaking and Air Release Valvesp. 31
1.3.3.6 Pressure Relief Valves and Bursting Discsp. 33
1.3.3.7 Bypass Linesp. 35
1.3.3.8 Avoiding Water Hammer in Steam Pipelinesp. 36
1.3.4 Choice of Protection Strategyp. 36
1.3.5 Summary of Part 1p. 38
Part 2
2.1 Assessment and Management of Riskp. 43
2.1.1 Introductionp. 43
2.1.2 A Procedure for Fluid Transient Risk Assessmentsp. 47
2.2 Demonstration Examplesp. 49
2.2.1 Rising Main Examplep. 49
2.2.2 Rising Main Example 2p. 61
2.2.3 A Pumped Outfallp. 66
2.2.4 A Gravity-Fed Mainp. 69
2.2.5 A Line to an Offshore Oil Terminalp. 72
2.2.6 A Process System Supplied by a Ram Pumpp. 76
2.2.7 A High-Pressure Feed Systemp. 80
2.2.8 Looped Networksp. 86
2.2.9 An Ash Slurry Linep. 89
2.2.10 A Sub-Sea Recharge Systemp. 92
2.2.11 Cooling Water Systemsp. 96
2.2.12 A Phosphate Ester Pipelinep. 99
2.2.13 Key Points Developed in Sections 2.1 and 2.2p. 101
2.3 Computer Modelling of Transient Flowsp. 102
2.3.1 Introductionp. 102
2.3.2 Brief Outline of Solution by the Method of Characteristicsp. 103
2.3.3 Idealizations and Assumptionsp. 107
2.3.4 Preparation for Computer-Aided Analysesp. 109
2.3.4.1 System Datap. 110
2.3.4.2 Fluid Datap. 110
2.3.4.3 Pipes and Tunnelsp. 110
2.3.4.4 Junctionsp. 110
2.3.4.5 Pumpsp. 111
2.3.4.6 Valvesp. 111
2.3.4.7 Reservoirs, Sumps and Tanksp. 111
2.3.4.8 Air Vessels, Accumulators and Surge Shaftsp. 111
2.3.4.9 Feed Tanksp. 112
2.3.4.10 Bypass Linesp. 112
2.3.4.11 Transient Event Datap. 112
2.3.4.12 Aims and Objectivesp. 113
2.3.4.13 Expectations on Completionp. 113
2.3.4.14 Idealizations and Assumptionsp. 113
2.3.4.15 Confirmation and Testingp. 114
2.4 Accidents and Incidentsp. 119
2.4.1 The Case of the Lightweight Anchor Blocksp. 119
2.4.2 The Dancing Feed Rangep. 120
2.4.3 Where has all the Water Gone?p. 121
2.4.4 A Midnight Feastp. 122
2.4.5 Green for Dangerp. 123
2.4.6 Minor Change--Major Problemp. 126
2.4.7 A Positive Reflectionp. 126
2.4.8 Hanging Freep. 128
2.4.9 The Devil is in the Detailp. 129
2.4.10 Lessons to be Learnedp. 130
2.5 Transients: Current Status--Future Developmentsp. 131
2.5.1 Summary of Fluid Transient Modelling Capability in 2003p. 131
2.5.2 Knowledge Engineering and Fluid Transientsp. 133
2.5.3 Behaviour and Response of the Fluidp. 137
2.5.4 Dynamic Behaviour of Components and Devicesp. 138
2.5.5 Fluid-Structure Interaction (FSI)p. 139
2.5.6 Concluding Remarksp. 140
Part 3
3.1 Some Basic Theoryp. 143
3.1.1 Change in Pressure across a Transientp. 143
3.1.2 The Wave Speed Equationp. 144
3.1.3 Equations for Calculating Wave Speedsp. 145
3.1.3.1 Pipes of Circular Cross-Sectionp. 145
3.1.3.2 Tunnelsp. 151
3.1.3.3 Plastic, uPVC and Glass-Reinforced Plastic Pipesp. 153
3.1.3.4 Non-circular Ductsp. 153
3.1.3.5 Liquids Other than Waterp. 154
3.1.3.6 Multiphase and Multicomponent Fluidsp. 155
3.1.3.7 Plastically Deforming Tubesp. 158
3.1.3.8 Flexible Hosesp. 159
3.1.3.9 Data for Wave Speed Estimatesp. 160
3.2 Rigid Column Approximationsp. 162
3.2.1 Equation of Motionp. 163
3.2.2 Cavity Formation and Collapse in a Rising Mainp. 164
3.2.3 Air or Water Admission at a Low-Pressure Pointp. 167
3.3 Estimation of Air Vessel Capacitiesp. 168
3.3.1 Rising Mainsp. 168
3.3.1.1 Unthrottled Air Vesselsp. 169
3.3.1.2 Throttled (Bypass) Air Vesselsp. 185
3.3.1.3 Worked Example and Outline Procedurep. 187
3.3.2 Start-up of Deep-Well Pumpsp. 190
3.3.2.1 Outline Procedurep. 196
3.3.2.2 Demonstration Examplep. 197
3.4 Pump Datap. 201
3.4.1 Pump Performance Characteristicsp. 201
3.4.2 Moment of Inertia of Pumps and Motorsp. 210
3.4.2.1 Pump Inertiasp. 210
3.4.2.2 Motor Inertiasp. 213
3.5 Pressure Rises Following Valve Closurep. 214
3.6 Air Relief and Vacuum-Breaking Valvesp. 224
3.6.1 Ventilation of Pipelinesp. 225
3.6.2 Air Valves for Surge Controlp. 227
3.6.3 Selection and Siting of Air Valvesp. 230
3.6.4 Air Valves in Fuel and Petrochemical Linesp. 233
3.6.5 Air Valves for Sewage and Industrial Effluentsp. 234
3.6.6 Air Valves for Deep-Well Installationsp. 235
3.6.7 The Sizing of Air Valvesp. 235
3.6.8 Care and Maintenancep. 238
3.7 Pressure Relief and Safety Valvesp. 238
3.7.1 Sizing Considerationsp. 241
3.7.2 Bursting Discsp. 243
3.8 Valve Characteristicsp. 245
3.8.1 Head Losses Through Valvesp. 245
3.8.2 Dynamic Performance of Check Valvesp. 264
3.9 Other Sources of Informationp. 270
3.9.1 Bibliographyp. 270
3.9.2 World Wide Webp. 271
Referencesp. 274
Suggested Further Readingp. 279
Indexp. 281