Skip to:Content
|
Bottom
Cover image for Blind image deconvolution : theory and applications
Title:
Blind image deconvolution : theory and applications
Publication Information:
Boca Raton, FL : CRC Press, 2007
ISBN:
9780849373671

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010133161 TA1632 B54 2007 Open Access Book Book
Searching...

On Order

Summary

Summary

Blind image deconvolution is constantly receiving increasing attention from the academic as well the industrial world due to both its theoretical and practical implications. The field of blind image deconvolution has several applications in different areas such as image restoration, microscopy, medical imaging, biological imaging, remote sensing, astronomy, nondestructive testing, geophysical prospecting, and many others. Blind Image Deconvolution: Theory and Applications surveys the current state of research and practice as presented by the most recognized experts in the field, thus filling a gap in the available literature on blind image deconvolution.

Explore the gamut of blind image deconvolution approaches and algorithms that currently exist and follow the current research trends into the future. This comprehensive treatise discusses Bayesian techniques, single- and multi-channel methods, adaptive and multi-frame techniques, and a host of applications to multimedia processing, astronomy, remote sensing imagery, and medical and biological imaging at the whole-body, small-part, and cellular levels. Everything you need to step into this dynamic field is at your fingertips in this unique, self-contained masterwork.

For image enhancement and restoration without a priori information, turn to Blind Image Deconvolution: Theory and Applications for the knowledge and techniques you need to tackle real-world problems.


Table of Contents

Tom E. Bishop and S. Derin Babacan and Bruno Amizic and Aggelos K. Katsaggelos and Tony Chan and Rafael MolinaPatrizio Campisi and Alessandro Neri and Stefania Colonnese and Gianpiero Panci and Gaetano ScaranoVladimir Katkovnik and Karen Egiazarian and Jaakko AstolaAristidis Likas and Nikolas P. GalatsanosOleg V. Michailovich and Dan R. AdamAndré Jalobeanu and Josiane Zerubia and Laure Blanc-FéraudEric Pantin and Jean-Luc Starck and Fionn MurtaghFilip èroubek and Jan Fusser and Gabriel CristóbalDimitrios Hatzinakos and Alexia Giannoula and Jianxin HanMichael K. Ng and Robert J. Plemmons
1 Blind Image Deconvolution: Problem Formulation and Existing Approachesp. 1
1.1 Introductionp. 1
1.2 Mathematical Problem Formulationp. 4
1.3 Classification of Blind Image Deconvolution Methodologiesp. 5
1.4 Bayesian Framework for Blind Image Deconvolutionp. 6
1.5 Bayesian Modeling of Blind Image Deconvolutionp. 7
1.5.1 Observation Modelp. 7
1.5.2 Parametric Prior Blur Modelsp. 8
1.5.3 Prior Image and Blur Modelsp. 9
1.5.4 Hyperprior Modelsp. 15
1.6 Bayesian Inference Methods in Blind Image Deconvolutionp. 16
1.6.1 Maximum a Posteriori and Maximum Likelihoodp. 16
1.6.2 Minimum Mean Squared Errorp. 18
1.6.3 Marginalizing Hidden Variablesp. 19
1.6.4 Variational Bayesian Approachp. 21
1.6.5 Sampling Methodsp. 22
1.7 Non-Bayesian Blind Image Deconvolution Modelsp. 24
1.7.1 Spectral and Cepstral Zero Methodsp. 25
1.7.2 Zero Sheet Separation Algorithmsp. 26
1.7.3 ARMA Parameter Estimation Algorithmsp. 26
1.7.4 Nonparametric Deterministic Constraints Algorithmsp. 27
1.7.5 Nonparametric Algorithms Based on Higher-Order Statisticsp. 29
1.7.6 Total Least Squares (TLS)p. 29
1.7.7 Learning-Based Algorithmsp. 30
1.7.8 Methods for Spatially Varying Degradationp. 30
1.7.9 Multichannel Methodsp. 31
1.8 Conclusionsp. 32
Referencesp. 32
2 Blind Image Deconvolution Using Bussgang Techniques: Applications to Image Deblurring and Texture Synthesisp. 43
Abstractp. 43
2.1 Introductionp. 44
2.2 Bussgang Processesp. 46
2.3 Single-Channel Bussgang Deconvolutionp. 48
2.3.1 Convergency Issuep. 51
2.3.2 Application to Texture Synthesisp. 55
2.4 Multichannel Bussgang Deconvolutionp. 61
2.4.1 The Observation Modelp. 62
2.4.2 Multichannel Wiener Filterp. 63
2.4.3 Multichannel Bussgang Algorithmp. 64
2.4.4 Application to Image Deblurring: Binary Text and Spiky Imagesp. 67
2.4.5 Application to Image Deblurring: Natural Imagesp. 73
2.5 Conclusionsp. 85
Referencesp. 88
3 Blind Multiframe Image Deconvolution Using Anisotropic Spatially Adaptive Filtering for Denoising and Regularizationp. 95
Abstractp. 95
3.1 Introductionp. 96
3.1.1 Blind and Nonblind Inversep. 96
3.1.2 Inverse Regularizationp. 98
3.2 Observation Model and Preliminariesp. 100
3.3 Frequency Domain Equationsp. 102
3.4 Projection Gradient Optimizationp. 104
3.5 Anisotropic LPA-ICI Spatially Adaptive Filteringp. 108
3.5.1 Motivationp. 109
3.5.2 Sectorial Neighborhoodsp. 110
3.5.3 Adaptive Window Sizep. 110
3.5.4 LPA-ICI Filteringp. 111
3.6 Blind Deconvolution Algorithmp. 112
3.6.1 Main Procedurep. 112
3.6.2 Image Alignmentp. 114
3.7 Identifiability and Convergencep. 114
3.7.1 Perfect Reconstructionp. 114
3.7.2 Hessian and Identifiabilityp. 115
3.7.3 Conditioning and Convergence Ratep. 117
3.8 Simulationsp. 120
3.8.1 Criteria and Algorithm Parametersp. 120
3.8.2 Illustrative Resultsp. 122
3.8.3 Perfect Reconstructionp. 128
3.8.4 Numerical Resultsp. 128
3.8.5 Image Alignmentp. 130
3.8.6 Reconstruction of Color Imagesp. 132
3.9 Conclusionsp. 134
Acknowledgmentsp. 136
Referencesp. 136
4 Bayesian Methods Based on Variational Approximations for Blind Image Deconvolutionp. 141
Abstractp. 141
4.1 Introductionp. 142
4.2 Background on Variational Methodsp. 145
4.3 Variational Blind Deconvolutionp. 146
4.3.1 Variational Functional F(q, ?)p. 146
4.3.2 Maximization of the Variational Bound F(q, ?)p. 149
4.4 Numerical Experimentsp. 152
4.4.1 Partially Known Casep. 153
4.4.2 Unknown Casep. 153
4.5 Conclusions and Future Workp. 154
Appendix A Computation of the Variational Bound F(q, ?)p. 155
Appendix B Maximization of F{{q, ?)p. 157
Referencesp. 165
5 Deconvolution of Medical Images from Microscopic to Whole Body Imagesp. 169
Abstractp. 169
5.1 Introductionp. 170
5.1.1 Medical Imaging: Tendencies and Goalsp. 170
5.1.2 Linear Modeling of Image Formationp. 171
5.1.3 Blind Deconvolution in Medical Ultrasound Imagingp. 172
5.1.4 Blind Deconvolution in Single Photon Emission Computed Tomographyp. 175
5.1.5 Blind Deconvolution in Confocal Microscopyp. 176
5.1.6 Organization of the Chapterp. 178
5.2 Nonblind Deconvolutionp. 179
5.2.1 Regularization via Maximum a Posteriori Estimationp. 179
5.2.2 Numerical Optimization via Newton Methodp. 182
5.2.3 Blind Deconvolution with Shift-Variant Blursp. 183
5.3 Blind Deconvolution in Ultrasound Imagingp. 184
5.3.1 Blind Deconvolution via Statistical Modelingp. 185
5.3.2 Blind Deconvolution via Higher-Order Spectra Analysisp. 190
5.3.3 Horaomorphic Deconvolution: 1-D Casep. 192
5.3.4 Homomorphic Deconvolution: 2-D Casep. 199
5.3.5 Generalized Homomorphic Deconvolutionp. 205
5.3.6 Blind Deconvolution via Inverse Filteringp. 211
5.4 Blind Deconvolution in Spectp. 215
5.4.1 Origins of the Blurring Artifact in Spectp. 215
5.4.2 Blind Deconvolution via Alternative Minimizationp. 217
5.4.3 Blind Deconvolution via Nonnegativity and Support Constrains Recursive Inverse Filteringp. 222
5.5 Blind Deconvolution in Confocal Microscopyp. 223
5.5.1 Maximum Likelihood Deconvolution in Fluorescence Microscopyp. 223
5.5.2 Refinements of the EM Algorithmsp. 227
5.5.3 Blind Deconvolution in 3-D Transmitted Light Brightfield Microscopyp. 227
5.6 Summaryp. 228
Referencesp. 230
6 Bayesian Estimation of Blur and Noise in Remote Sensing Imagingp. 239
Abstractp. 239
6.1 Introductionp. 240
6.1.1 Blind Deconvolution: State of the Artp. 241
6.1.2 Constraining a Difficult Problemp. 243
6.1.3 The Bayesian Viewpointp. 244
6.2 The Forward Modelp. 245
6.2.1 Modeling the Natural Scene Using Fractalsp. 245
6.2.2 Understanding the Image Formationp. 246
6.3 Bayesian Estimation: Invert the Forward Modelp. 249
6.3.1 Marginalization and Related Approximationsp. 250
6.3.2 A Natural Parameter Estimation Algorithm (BLINDE)p. 251
6.3.3 Why Use a Simplified Model?p. 253
6.3.4 A Simplified, Optimized Algorithmp. 255
6.4 Possible Improvements and Further Developmentp. 256
6.4.1 Computing Uncertaintiesp. 256
6.4.2 Model Assessment and Checkingp. 257
6.4.3 Robustness-Related Improvementsp. 258
6.5 Resultsp. 259
6.5.1 First Method: Blindep. 259
6.5.2 Second methodp. 259
6.6 Conclusionsp. 271
Acknowledgmentsp. 271
Referencesp. 271
7 Deconvolution and Blind Deconvolution in Astronomyp. 277
Abstractp. 277
7.1 Introductionp. 278
7.2 The Deconvolution Problemp. 280
7.3 Linear Regularized Methodsp. 282
7.3.1 Least Squares Solutionp. 282
7.3.2 Tikhonov Regularizationp. 282
7.4 Cleanp. 283
7.5 Bayesian Methodologyp. 283
7.5.1 Definitionp. 284
7.5.2 Maximum Likelihood with Gaussian Noisep. 284
7.5.3 Gaussian Bayes Modelp. 285
7.5.4 Maximum Likelihood with Poisson Noisep. 285
7.5.5 Maximum a Posteriori with Poisson Noisep. 286
7.5.6 Maximum Entropy Methodp. 286
7.5.7 Other Regularization Modelsp. 287
7.6 Iterative Regularized Methodsp. 288
7.6.1 Constraintsp. 288
7.6.2 Jansson-Van Cittert Methodp. 289
7.6.3 Other Iterative Methodsp. 289
7.7 Wavelet-Based Deconvolutionp. 290
7.7.1 Introductionp. 290
7.7.2 Regularization from the Multiresolution Supportp. 292
7.7.3 Multiresolution Cleanp. 295
7.7.4 The Wavelet Constraintp. 295
7.8 Deconvolution and Resolutionp. 300
7.9 Myopic and Blind Deconvolutionp. 301
7.9.1 Myopic Deconvolutionp. 303
7.9.2 Blind Deconvolutionp. 305
7.10 Conclusions and Chapter Summaryp. 308
Acknowledgmentsp. 309
Referencesp. 309
8 Multiframe Blind Deconvolution Coupled with FrameRegistration and Resolution Enhancementp. 317
Abstract

p. 317

8.1 Introductionp. 318
8.2 Mathematical Modelp. 321
8.3 Polyphase Formulationp. 323
8.3.1 Integer Downsampling Factorp. 324
8.3.2 Rational Downsampling Factorp. 325
8.4 Reconstruction of Volatile Blursp. 326
8.4.1 The MBD Casep. 327
8.4.2 The RSR Casep. 327
8.5 Blind Superresolutionp. 330
8.6 Experimentsp. 333
8.6.1 Simulated Datap. 333
8.6.2 Real Datap. 335
8.6.3 Performance Experimentsp. 338
8.7 Conclusionsp. 345
Acknowledgmentp. 345
Referencesp. 346
9 Blind Reconstruction of Multiframe Imagery Based on Fusion and Classificationp. 349
Abstract

p. 349

9.1 Introductionp. 350
9.2 System Overviewp. 351
9.3 Recursive Inverse Filtering with Finite Normal-Density Mixtures (RIF-FNM)p. 352
9.3.1 Image Modeling Using Finite Mixture Distributionsp. 352
9.3.2 Pixel Classificationp. 356
9.3.3 ML-Based Image Fusionp. 357
9.4 Optimal Filter Adaptationp. 358
9.5 Effects of Noisep. 360
9.6 The Fusion and Classification Recursive Inverse Filtering Algorithm (FAC-RIF)p. 361
9.6.1 The Iterative Algorithmp. 362
9.6.2 Prefiltering and Postfiltering Processingp. 363
9.6.3 Classificationp. 363
9.6.4 Fusion-Based Classificationp. 364
9.6.5 Fusion of Reconstructed Imagesp. 364
9.7 Experimental Resultsp. 365
9.8 Final Remarksp. 371
Referencesp. 371
10 Blind Deconvolution and Structured Matrix Computations with Applications to Array Imagingp. 377
Abstractp. 377
10.1 Introductionp. 378
10.2 One-Dimensional Deconvolution Formulationp. 379
10.3 Regularized and Constrained TLS Formulationp. 382
10.3.1 Symmetric Point Spread Functionsp. 386
10.4 Numerical Algorithmsp. 388
10.4.1 The Preconditioned Conjugate Gradient Methodp. 390
10.4.2 Cosine Transform-Based Preconditionersp. 394
10.5 Two-Dimensional Deconvolution Problemsp. 396
10.6 Numerical Examplesp. 398
10.7 Application: High-Resolution Image Reconstructionp. 400
10.7.1 Mathematical Modelp. 403
10.7.2 Image Reconstruction Formulationp. 406
10.7.3 Simulation Resultsp. 411
10.8 Concluding Remarks and Current Workp. 416
Acknowledgmentsp. 418
Referencesp. 418
Indexp. 423
Go to:Top of Page