Cover image for Chemical engineering fluid mechanics
Chemical engineering fluid mechanics
Personal Author:
2nd edition, revised and expanded
Publication Information:
New York : Marcel Dekker, 2001


Item Barcode
Call Number
Material Type
30000004381087 TP155.5 D37 2001 Open Access Book

On Order



Combining comprehensive theoretical and empirical perspectives into a clearly organized text, Chemical Engineering Fluid Mechanics, Second Editiondiscusses the principal behavioral concepts of fluids and the basic methods of analysis for resolving a variety of engineering situations. Drawing on the author's 35 years of experience, the book covers real-world engineering problems and concerns of performance, equipment operation, sizing, and selection from the viewpoint of a process engineer. It supplies over 1500 end-of-chapter problems, examples, equations, literature references, illustrations, and tables to reinforce essential concepts.

Author Notes

Ron Darby is a Professor of Chemical Engineering, Texas AandM University, College Station

Reviews 1

Choice Review

This updated third edition (CH, Oct'01, 39-0959) of Chemical Engineering Fluid Mechanics is an excellent textbook in its methodical style and format. The book is particularly suitable for undergraduate students. It may also be adopted appropriately by other disciplines with interest in porous media and two-phase flows. The book consists of 16 chapters, with foundational sections for a first semester course; however, it can also be utilized in a two-semester sequence. The book contains a plethora of topics that include non-Newtonian fluids, compressible choked flows, and cyclone separation. The authors are commended for articulating theories with clear mathematical formulations. The style is quite appealing pedagogically, as it provides balanced examples between SI units and British gravitational units. Each chapter ends with a summary of key points covered and well-thought-out practice problems to build students' skills in solving problems and learning the principles of chemical engineering fluid mechanics. This book is quite effective--it is even practical as a self-study guide. Summing Up: Highly recommended. Upper-division undergraduates. --Raymond N. Laoulache, University of Massachusetts Dartmouth

Table of Contents

Prefacep. iii
Unit Conversion Factorsp. xvi
1. Basic Conceptsp. 1
I. Fundamentalsp. 1
A. Basic Lawsp. 1
B. Experiencep. 2
II. Objectivep. 2
III. Phenomenological Rate or Transport Lawsp. 3
A. Fourier's Law of Heat Conductionp. 4
B. Fick's Law of Diffusionp. 5
C. Ohm's Law of Electrical Conductivityp. 5
D. Newton's Law of Viscosityp. 6
IV. The "System"p. 9
V. Turbulent Macroscopic (Convective) Transport Modelsp. 10
Problemsp. 11
Notationp. 13
2. Dimensional Analysis and Scale-upp. 15
I. Introductionp. 15
II. Units and Dimensionsp. 16
A. Dimensionsp. 16
B. Unitsp. 18
C. Conversion Factorsp. 19
III. Conservation of Dimensionsp. 20
A. Numerical Valuesp. 21
B. Consistent Unitsp. 22
IV. Dimensional Analysisp. 22
A. Pipeline Analysisp. 25
B. Uniquenessp. 28
C. Dimensionless Variablesp. 28
D. Problem Solutionp. 29
E. Alternative Groupsp. 29
V. Scale-Upp. 30
VI. Dimensionless Groups in Fluid Mechanicsp. 35
VII. Accuracy and Precisionp. 35
Problemsp. 40
Notationp. 52
3. Fluid Properties in Perspectivep. 55
I. Classification of Materials and Fluid Propertiesp. 55
II. Determination of Fluid Viscous (Rheological) Propertiesp. 59
A. Cup-and-Bob (Couette) Viscometerp. 60
B. Tube Flow (Poiseuille) Viscometerp. 63
III. Types of Observed Fluid Behaviorp. 64
A. Newtonian Fluidp. 65
B. Bingham Plastic Modelp. 65
C. Power Law Modelp. 66
D. Structural Viscosity Modelsp. 67
IV. Temperature Dependence of Viscosityp. 71
A. Liquidsp. 71
B. Gasesp. 72
V. Densityp. 72
Problemsp. 73
Notationp. 83
Referencesp. 84
4. Fluid Staticsp. 85
I. Stress and Pressurep. 85
II. The Basic Equation of Fluid Staticsp. 86
A. Constant Density Fluidsp. 88
B. Ideal Gas--Isothermalp. 89
C. Ideal Gas--Isentropicp. 90
D. The Standard Atmospherep. 90
III. Moving Systemsp. 91
A. Vertical Accelerationp. 91
B. Horizontally Accelerating Free Surfacep. 92
C. Rotating Fluidp. 93
IV. Buoyancyp. 94
V. Static Forces on Solid Boundariesp. 94
Problemsp. 96
Notationp. 104
5. Conservation Principlesp. 105
I. The Systemp. 105
II. Conservation of Massp. 106
A. Macroscopic Balancep. 106
B. Microscopic Balancep. 107
III. Conservation of Energyp. 108
A. Internal Energyp. 110
B. Enthalpyp. 112
IV. Irreversible Effectsp. 113
A. Kinetic Energy Correctionp. 116
V. Conservation of Momentump. 120
A. One-Dimensional Flow in a Tubep. 121
B. The Loss Coefficientp. 123
C. Conservation of Angular Momentump. 127
D. Moving Boundary Systems and Relative Motionp. 128
E. Microscopic Momentum Balancep. 130
Problemsp. 134
Notationp. 146
6. Pipe Flowp. 149
I. Flow Regimesp. 149
II. General Relations for Pipe Flowsp. 151
A. Energy Balancep. 151
B. Momentum Balancep. 152
C. Continuityp. 153
D. Energy Dissipationp. 153
III. Newtonian Fluidsp. 154
A. Laminar Flowp. 154
B. Turbulent Flowp. 155
C. All Flow Regimesp. 164
IV. Power Law Fluidsp. 164
A. Laminar Flowp. 165
B. Turbulent Flowp. 166
C. All Flow Regimesp. 166
V. Bingham Plasticsp. 167
A. Laminar Flowp. 168
B. Turbulent Flowp. 169
C. All Reynolds Numbersp. 169
VI. Pipe Flow Problemsp. 169
A. Unknown Driving Forcep. 170
B. Unknown Flow Ratep. 172
C. Unknown Diameterp. 174
D. Use of Tablesp. 177
VII. Tube Flow (Poiseuille) Viscometerp. 177
VIII. Turbulent Drag Reductionp. 178
Problemsp. 184
Notationp. 192
Referencesp. 193
7. Internal Flow Applicationsp. 195
I. Noncircular Conduitsp. 195
A. Laminar Flowsp. 195
B. Turbulent Flowsp. 198
II. Most Economical Diameterp. 200
A. Newtonian Fluidsp. 203
B. Non-Newtonian Fluidsp. 205
III. Friction Loss in Valves and Fittingsp. 206
A. Loss Coefficientp. 207
B. Equivalent L/D Methodp. 207
C. Crane Methodp. 208
D. 2-K (Hooper) Methodp. 209
E. 3-K (Darby) Methodp. 209
IV. Non-Newtonian Fluidsp. 214
V. Pipe Flow Problems with Fittingsp. 215
A. Unknown Driving Forcep. 216
B. Unknown Flow Ratep. 217
C. Unknown Diameterp. 218
VI. Slack Flowp. 221
VII. Pipe Networksp. 225
Problemsp. 228
Notationp. 237
Referencesp. 238
8. Pumps and Compressorsp. 239
I. Pumpsp. 239
A. Positive Displacement Pumpsp. 239
B. Centrifugal Pumpsp. 240
II. Pump Characteristicsp. 241
III. Pumping Requirements and Pump Selectionp. 243
A. Required Headp. 244
B. Composite Curvesp. 245
IV. Cavitation and Net Positive Suction Head (NPSH)p. 247
A. Vapor Lock and Cavitationp. 247
B. NPSHp. 248
C. Specific Speedp. 249
D. Suction Specific Speedp. 250
V. Compressorsp. 252
A. Isothermal Compressionp. 254
B. Isentropic Compressionp. 254
C. Staged Operationp. 255
D. Efficiencyp. 256
Problemsp. 256
Notationp. 265
Referencesp. 266
9. Compressible Flowsp. 267
I. Gas Propertiesp. 267
A. Ideal Gasp. 267
B. The Speed of Soundp. 268
II. Pipe Flowp. 270
A. Isothermal Flowp. 271
B. Adiabatic Flowp. 273
C. Choked Flowp. 273
D. The Expansion Factorp. 275
E. Ideal Adiabatic Flowp. 277
III. Generalized Expressionsp. 279
A. Governing Equationsp. 279
B. Applicationsp. 281
C. Solution of High-Speed Gas Problemsp. 283
Problemsp. 286
Notationp. 290
Referencesp. 291
10. Flow Measurement and Controlp. 293
I. Scopep. 293
II. The Pitot Tubep. 293
III. The Venturi and Nozzlep. 295
IV. The Orifice Meterp. 304
A. Incompressible Flowp. 305
B. Compressible Flowp. 306
V. Loss Coefficientp. 308
VI. Orifice Problemsp. 310
A. Unknown Pressure Dropp. 311
B. Unknown Flow Ratep. 311
C. Unknown Diameterp. 312
VII. Control Valvesp. 312
A. Valve Characteristicsp. 313
B. Valve Sizing Relationsp. 314
C. Compressible Fluidsp. 327
D. Viscosity Correctionp. 330
Problemsp. 333
Notationp. 338
Referencesp. 339
11. External Flowsp. 341
I. Drag Coefficientp. 341
A. Stokes Flowp. 342
B. Form Dragp. 343
C. All Reynolds Numbersp. 343
D. Cylinder Dragp. 344
E. Boundary Layer Effectsp. 345
II. Falling Particlesp. 347
A. Unknown Velocityp. 348
B. Unknown Diameterp. 349
C. Unknown Viscosityp. 349
III. Correction Factorsp. 350
A. Wall Effectsp. 350
B. Drops and Bubblesp. 351
IV. Non-Newtonian Fluidsp. 352
A. Power Law Fluidsp. 352
B. Wall Effectsp. 357
C. Carreau Fluidsp. 358
D. Bingham Plasticsp. 358
Problemsp. 361
Notationp. 363
Referencesp. 364
12. Fluid-Solid Separations by Free Settlingp. 365
I. Fluid-Solid Separationsp. 365
II. Gravity Settlingp. 366
III. Centrifugal Separationp. 367
A. Fluid-Solid Separationp. 367
B. Separation of Immiscible Liquidsp. 371
IV. Cyclone Separationsp. 375
A. General Characteristicsp. 375
B. Aerocyclonesp. 376
C. Hydrocyclonesp. 382
Problemsp. 385
Notationp. 389
Referencesp. 390
13. Flow in Porous Mediap. 391
I. Description of Porous Mediap. 391
A. Hydraulic Diameterp. 392
B. Porous Medium Friction Factorp. 393
C. Porous Medium Reynolds Numberp. 394
II. Friction Loss in Porous Mediap. 394
A. Laminar Flowp. 394
B. Turbulent Flowp. 395
C. All Reynolds Numbersp. 395
III. Permeabilityp. 395
IV. Multidimensional Flowp. 396
V. Packed Columnsp. 398
VI. Filtrationp. 401
A. Governing Equationsp. 401
B. Constant Pressure Operationp. 405
C. Constant Flow Operationp. 406
D. Cycle Timep. 406
E. Plate-and-Frame Filtersp. 407
F. Rotary Drum Filterp. 408
G. Compressible Cakep. 408
Problemsp. 409
Notationp. 417
Referencesp. 418
14. Fluidization and Sedimentationp. 419
I. Fluidizationp. 419
A. Governing Equationsp. 420
B. Minimum Bed Voidagep. 421
C. Nonspherical Particlesp. 421
II. Sedimentationp. 423
A. Hindered Settlingp. 423
B. Fine Particlesp. 425
C. Coarse Particlesp. 428
D. All Flow Regimesp. 428
III. Generalized Sedimentation/Fluidizationp. 430
IV. Thickeningp. 430
Problemsp. 436
Notationp. 441
Referencesp. 442
15. Two-Phase Flowp. 443
I. Scopep. 443
II. Definitionsp. 444
III. Fluid-Solid Two-Phase Pipe Flowsp. 447
A. Pseudohomogeneous Flowsp. 447
B. Heterogeneous Liquid-Solid Flowsp. 449
C. Pneumatic Solids Transportp. 454
IV. Gas-Liquid Two-Phase Pipe Flowp. 459
A. Flow Regimesp. 459
Problemsp. 474
Notationp. 475
Referencesp. 477
A. Viscosities and Other Properties of Gases and Liquidsp. 479
B. Generalized Viscosity Plotp. 499
C. Properties of Gasesp. 501
D. Pressure-Enthalpy Diagrams for Various Compoundsp. 505
E. Microscopic Conservation Equations in Rectangular, Cylindrical, and Spherical Coordinatesp. 513
F. Standard Steel Pipe Dimensions and Capacitiesp. 519
G. Flow of Water/Air Through Schedule 40 Pipep. 525
H. Typical Pump Head Capacity Range Chartsp. 531
I. Fanno Line Tables for Adiabatic Flow of Air in a Constant Area Ductp. 543
Indexp. 553