Skip to:Content
|
Bottom
Cover image for Combustion : physical and chemical fundamentals, modeling and simulation, experiments, pollutant formation
Title:
Combustion : physical and chemical fundamentals, modeling and simulation, experiments, pollutant formation
Personal Author:
Edition:
4th ed.
Publication Information:
Berlin : Springer, 2006
ISBN:
9783540259923
Subject Term:

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010134034 QD516 W37 2006 Open Access Book Book
Searching...

On Order

Summary

Summary

Combustion is an old technology, which at present provides about 90% of our worldwide energy support. Combustion research in the past used fluid mechanics with global heat release by chemical reactions described with thermodynamics, assuming infinitely fast reactions. This approach was useful for stationary combustion processes, but it is not sufficient for transient processes like ignition and quenching or for pollutant formation. Yet pollutant formation during combustion of fossil fuels is a central topic and will continue to be so in the future. This book provides a detailed and rigorous treatment of the coupling of chemical reactions and fluid flow. Also, combustion-specific topics of chemistry and fluid mechanics are considered and tools described for the simulation of combustion processes.

The actual fourth edition presents a completely restructured book: Mathematical Formulae and derivations as well as the space-consuming reaction mechanisms have been replaced from the text to appendix. A new chapter discusses the impact of combustion processes on the earth's atmosphere, the chapter on auto-ignition is extended to combustion in Otto- and Diesel-engines, and the chapters on heterogeneous combustion and on soot formation appear heavily revised.


Table of Contents

1 Introduction, Fundamental Definitions and Phenomenap. 1
1.1 Introductionp. 1
1.2 Some Fundamental Definitionsp. 1
1.3 Basic Flame Typesp. 4
1.4 Exercisesp. 8
2 Experimental Investigation of Flamesp. 9
2.1 Velocity Measurementsp. 10
2.2 Density Measurementp. 11
2.3 Concentration Measurementsp. 13
2.4 Temperature Measurementsp. 18
2.5 Pressure Measurementsp. 20
2.6 Measurement of Particle Sizesp. 21
2.7 Simultaneous Diagnosticsp. 22
2.8 Exercisesp. 27
3 Mathematical Description of Premixed Laminar Flat Flamesp. 29
3.1 Conservation Equations for Laminar Flat Premixed Flamesp. 29
3.2 Heat and Mass Transportp. 33
3.3 The Description of a Laminar Premixed Flat Flame Frontp. 33
3.4 Exercisesp. 38
4 Thermodynamics of Combustion Processesp. 39
4.1 The First Law of Thermodynamicsp. 39
4.2 Standard Enthalpies of Formationp. 41
4.3 Heat Capacitiesp. 43
4.4 The Second Law of Thermodynamicsp. 44
4.5 The Third Law of Thermodynamicsp. 45
4.6 Equilibrium Criteria and Thermodynamic Variablesp. 46
4.7 Equilibrium in Gas Mixtures; Chemical Potentialp. 47
4.8 Determination of Equilibrium Compositions in Gasesp. 49
4.9 Determination of Adiabatic Flame Temperaturesp. 51
4.10 Tabulation of Thermodynamic Datap. 52
4.11 Exercisesp. 55
5 Transport Phenomenap. 57
5.1 A Simple Physical Model of Transport Processesp. 57
5.2 Heat Conduction in Gasesp. 60
5.3 Viscosity of Gasesp. 62
5.4 Diffusion in Gasesp. 64
5.5 Thermal Diffusion, Dufour Effect, and Pressure Diffusionp. 66
5.6 Comparison with Experimentsp. 67
5.7 Exercisesp. 71
6 Chemical Kineticsp. 73
6.1 Rate Laws and Reaction Ordersp. 73
6.2 Relation of Forward and Reverse Reactionsp. 75
6.3 Elementary Reactions, Reaction Molecularityp. 75
6.4 Experimental Investigation of Elementary Reactionsp. 77
6.5 Temperature Dependence of Rate Coefficientsp. 79
6.6 Pressure Dependence of Rate Coefficientsp. 81
6.7 Surface Reactionsp. 84
6.8 Exercisesp. 88
7 Reaction Mechanismsp. 91
7.1 Characteristics of Reaction Mechanismsp. 91
7.1.1 Quasi-Steady Statesp. 92
7.1.2 Partial Equilibriump. 94
7.2 Analysis of Reaction Mechanismsp. 97
7.2.1 Sensitivity Analysisp. 97
7.2.2 Reaction Flow Analysisp. 101
7.2.3 Eigenvalue Analyses of Chemical Reaction Systemsp. 103
7.3 Stiffness of Ordinary Differential Equation Systemsp. 107
7.4 Simplification of Reaction Mechanismsp. 107
7.5 Radical Chain Reactionsp. 115
7.6 Exercisesp. 117
8 Laminar Premixed Flamesp. 119
8.1 Zeldovich's Analysis of Flame Propagationp. 119
8.2 Flame Structuresp. 121
8.3 Flame Velocitiesp. 124
8.4 Sensitivity Analysisp. 127
8.5 Exercisesp. 128
9 Laminar Nonpremixed Flamesp. 129
9.1 Counterflow Nonpremixed Flamesp. 129
9.2 Laminar Jet Nonpremixed Flamesp. 133
9.3 Nonpremixed Flames With Fast Chemistryp. 135
9.4 Exercisesp. 138
10 Ignition Processesp. 141
10.1 Semenov's Analysis of Thermal Explosionsp. 142
10.2 Frank-Kamenetskii's Analysis of Thermal Explosionsp. 143
10.3 Autoignition: Ignition Limitsp. 145
10.4 Autoignition: Ignition-Delay Timep. 148
10.5 Induced Ignition, Minimum Ignition Energiesp. 149
10.6 Spark Ignitionp. 153
10.7 Detonationsp. 157
10.8 Exercisesp. 163
11 Low-Temperature Oxidation, Engine Knockp. 165
11.1 Fundamental Phenomena in Otto Enginesp. 165
11.2 Oxidation at Intermediate Temperaturesp. 168
11.3 Low-Temperature Oxidationp. 169
11.4 Ignition Processes in Reciprocating Enginesp. 173
11.4.1 Knock Damages in Otto Enginesp. 173
11.4.2 Ignition in Diesel Enginesp. 174
11.4.3 The HCCI Conceptp. 175
11.4.4 The DICI Conceptp. 177
11.5 Exercisesp. 178
12 The Navier-Stokes-Equations for Three-Dimensional Reacting Flowp. 179
12.1 The Conservation Equationsp. 179
12.1.1 Overall Mass Conservationp. 180
12.1.2 Species Mass Conservationp. 181
12.1.3 Momentum Conservationp. 181
12.1.4 Energy Conservationp. 182
12.2 The Empirical Lawsp. 183
12.2.1 Newton's Lawp. 183
12.2.2 Fourier's Lawp. 184
12.2.3 Fick's Law and Thermal Diffusionp. 184
12.2.4 Calculation of the Transport Coefficients from Molecular Parametersp. 185
12.3 Exercisesp. 185
13 Turbulent Reacting Flowsp. 187
13.1 Some Fundamental Phenomenap. 187
13.2 Direct Numerical Simulationp. 189
13.3 Concepts for Turbulence Modeling: Time- and Favre-Averagingp. 192
13.4 Reynolds-Averaged Navier-Stokes (RANS) Equationsp. 194
13.5 Turbulence Modelsp. 196
13.6 Mean Reaction Ratesp. 200
13.7 Concepts for Turbulence Modeling: Probability Density Functionsp. 202
13.8 Eddy-Break-Up Modelsp. 206
13.9 Turbulent Scalesp. 207
13.10 Large-Eddy Simulation (LES)p. 209
13.11 Exercisesp. 211
14 Turbulent Nonpremixed Flamesp. 213
14.1 Nonpremixed Flames with Equilibrium Chemistryp. 214
14.2 Finite-Rate Chemistry in Nonpremixed Flamesp. 217
14.3 Flame Extinctionp. 221
14.4 PDF-Simulations of Turbulent Non-Premixed Flames Using a Monte-Carlo Methodp. 224
14.5 Exercisesp. 226
15 Turbulent Premixed Flamesp. 227
15.1 Classification of Turbulent Premixed Flamesp. 227
15.2 Flamelet Modelsp. 230
15.2.1 Flamelet Modelling Using a Reaction Progress Variablep. 231
15.2.2 Flamelet Modelling Using a Level-Set Methodp. 232
15.3 Turbulent Flame Velocityp. 233
15.4 Flame Extinctionp. 235
15.5 Other Models of Turbulent Premixed Combustionp. 237
15.6 Exercisesp. 238
16 Combustion of Liquid and Solid Fuelsp. 239
16.1 Droplet Combustionp. 239
16.1.1 Combustion of Single Dropletsp. 240
16.1.2 Combustion of Droplet Groupsp. 244
16.2 Spray Combustionp. 246
16.2.1 Formation of Spraysp. 246
16.2.2 Spray Combustion Modesp. 247
16.2.3 Statistical Description of Spraysp. 249
16.2.4 Modeling of Turbulent Spray Combustionp. 252
16.2.5 Flamelet-Type Models for Spray Combustionp. 253
16.3 Coal Combustionp. 255
16.3.1 Pyrolysis of Coalp. 255
16.3.2 Burning of Volatile Compoundsp. 256
16.3.3 Burning of the Cokep. 256
16.3.4 Coal Gasificationp. 257
16.4 Exercisesp. 258
17 Formation of Nitric Oxidesp. 259
17.1 Thermal NO (Zeldovich NO)p. 259
17.2 Prompt NO (Fenimore NO)p. 262
17.3 NO Generated via Nitrous Oxidep. 265
17.4 Conversion of Fuel Nitrogen into NOp. 265
17.5 NO Reduction by Combustion Modificationsp. 267
17.6 Catalytic Combustionp. 271
17.7 NO Reduction by Post-Combustion Processesp. 272
17.8 Exercisesp. 275
18 Formation of Hydrocarbons and Sootp. 277
18.1 Unburnt Hydrocarbonsp. 277
18.1.1 Flame Extinction Due to Strainp. 278
18.1.2 Flame Extinction at Walls and in Gapsp. 278
18.2 Formation of Polycyclic Aromatic Hydrocarbons (PAH)p. 280
18.3 The Phenomenology of Soot Formationp. 283
18.4 Modelling and Simulation of Soot Formationp. 287
18.5 Exercisesp. 296
19 Effects of Combustion Processes on the Atmospherep. 297
19.1 The Structure of the Atmospherep. 297
19.1.1 Pressure in the Atmospherep. 297
19.1.2 Temperature and Classification of Compartments in the Atmospherep. 299
19.1.3 Composition of the Atmospherep. 300
19.2 The Atmosphere as a Photochemical Systemp. 300
19.2.1 Lambert-Beer Lawp. 300
19.2.2 Stern-Vollmer Equationp. 301
19.2.3 Formation of Photochemical Layersp. 302
19.3 Incoming Sun Radiation, Photochemical Primary Processesp. 303
19.4 Physical Processes in the Atmospherep. 305
19.4.1 Conservation of the Mass of Speciesp. 305
19.4.2 Conservation of Energyp. 306
19.4.3 Solution of the Conservation Equationsp. 307
19.5 Chemistry of the Unpolluted Atmospherep. 307
19.5.1 Pure Oxygen Atmospherep. 307
19.5.2 Oxygen-Nitrogen-Hydrogen-Carbon Atmospherep. 308
19.6 Chemistry of the Polluted Atmospherep. 310
19.6.1 Photochemical Smogp. 310
19.6.2 Supersonic Transportsp. 314
19.6.3 Green-House Effectp. 315
19.6.4 Acid rainp. 316
19.7 The Role of Combustion Sources in Atmospheric Pollutionp. 317
20 Appendix 1: Mathematicsp. 319
20.1 Some Definitions and Laws for Vectors and Tensorsp. 319
20.2.1 Formulation of the Problemp. 320
20.2.2 General Remarks on Solution Algorithms for ODE Systemsp. 321
20.2.3 Euler Methodp. 322
20.2.4 Extrapolation Methodp. 324
20.3 Numerical Solution of Partial Differential Equation Systemsp. 325
20.3.1 Spatial Discretizationp. 326
20.3.2 Initial Values, Boundary Conditions, Stationary Solutionp. 328
20.3.3 Explicit Solution Methodsp. 329
20.3.4 Implicit Solution Methodsp. 330
20.3.5 Semi-implicit Solution of Partial Differential Equationsp. 330
20.3.6 Implicit Solution of Partial Differential Equationsp. 331
21 Appendix 2: Reaction Mechanismsp. 333
21.1 Mechanism of the Oxidation of H[subscript 2], CO, C[subscript 1] and C[subscript 2] Hydrocarbonsp. 333
21.2 Reaction Mechanism of the Generation and Consumption of NOxp. 340
22 Referencesp. 345
23 Indexp. 367
Go to:Top of Page