Cover image for Biological adhesives
Title:
Biological adhesives
Publication Information:
Berlin : Springer, 2006
Physical Description:
xvii, 284 p. : ill. ; 25 cm.
ISBN:
9783540310488

Available:*

Library
Item Barcode
Call Number
Material Type
Status
Searching...
30000010164316 TP968 B56 2006 Open Access Book
Searching...

On Order

Summary

Summary

Many creatures use adhesive polymers and structures to attach to inert substrates, to each other, or to other organisms. This is the first major review that brings together research on many of the well-known biological adhesives dealing with bacteria, fungi, algae, and marine and terrestrial animals. As we learn more about their molecular and mechanical properties we begin to understand why they adhere so well and with this comes broad applications in areas such as medicine, dentistry, and biotechnology.


Table of Contents

Anthony P. HaagPaolo Landini and Gregory Jubelin and Corinne Dorel-FlamantLynn Epstein and Ralph L. NicholsonJames A. Callow and Maureen E. CallowAnthony Chiovitti and Tony M. Dugdale and Richard WetherbeePhilippe Potin and Catherine LeblancJason Sagert and Chengjun Sun and J. Herbert WaiteKei KaminoAndrew M. SmithPatrick FlammangLloyd D. Graham and Veronica Glattauer and Yong Y. Peng and Paul R. Vaughan and Jerome A. Werkmeister and Michael J. Tyler and John A.M. RamshawKellar AutumnBruce P. Lee and Jeffrey L. Dalsin and Phillip B. Messersmith
1 Mechanical Properties of Bacterial Exopolymeric Adhesives and their Commercial Developmentp. 1
1.1 Introductionp. 1
1.2 Adhesive Developmentp. 4
1.2.1 Mechanical Testing of Adhesive Bondsp. 4
1.2.2 Bacterial Exopolymer Adhesivesp. 5
1.2.3 Related Polysaccharide-based Adhesivesp. 15
1.3 Outlookp. 17
Referencesp. 18
2 The Molecular Genetics of Bioadhesion and Biofilm Formationp. 21
2.1 Biofilm Formation and its Regulationp. 21
2.1.1 Environmental Factors Leading to Biofilm Formationp. 22
2.1.2 Quorum Sensingp. 23
2.1.3 Global Regulatorsp. 24
2.2 A Case of Complex Regulatory Control: The Curli Factors (Thin Aggregative Fimbriae) of Enterobacteriap. 26
2.2.1 Curli Fibers: A Major Determinant for Biofilm Formation in Enterobacteriap. 26
2.2.2 Conditions for the Expression of Curlip. 28
2.2.3 Regulation by Osmolarityp. 30
2.2.4 Regulation According to the Bacterial Growth Phasep. 31
2.2.5 Thermoregulationp. 31
2.2.6 Regulation as a Result of Oxygen Concentrationp. 32
2.2.7 Other Regulatory Systemsp. 33
2.3 GGDEF and EAL Regulatory Proteins: Regulation of Exopolysaccharide Biosynthesis at the Enzyme Levelp. 33
2.3.1 The GGDEF-EAL Protein Familyp. 33
Referencesp. 35
3 Adhesion and Adhesives of Fungi and Oomycetesp. 41
3.1 Introductionp. 41
3.2 Prevalence and Importance of Adhesion in Fungi and Oomycetesp. 41
3.2.1 Adhesion as Part of Many Stages of Morphogenesis in Many Fungip. 42
3.2.2 Functions of Adhesionp. 43
3.2.3 Selected Examplesp. 44
3.3 Challenges in Identifying Adhesives in Fungip. 45
3.3.1 Genetic 'Knockout' and 'Knockin' Strategiesp. 45
3.3.2 Biochemical Strategiesp. 47
3.4 Fungal and Oomycete Gluesp. 47
3.4.1 Featuresp. 47
3.4.2 Composition of Gluesp. 48
3.4.3 Secretion and Crosslinking, with a Focus on Transglutaminasep. 49
3.4.4 Cell-surface Macromolecules with Apparent Adhesive Propertiesp. 49
3.5 Fungal Adhesinsp. 55
3.6 Conclusionsp. 56
Referencesp. 57
4 The Ulva Spore Adhesive Systemp. 63
4.1 Introductionp. 63
4.2 Cell Biological and Biochemical Aspectsp. 64
4.2.1 The 'Adhesive Apparatus'p. 64
4.2.2 Use of Monoclonal Antibodies to Identify the Contents of Adhesive Vesiclesp. 66
4.2.3 Biochemical Characteristics of the Adhesive Antigensp. 68
4.2.4 Experiments on Cross-linkingp. 68
4.2.5 Molecular Aspectsp. 69
4.3 Physical and Mechanical Properties of the Adhesivep. 69
4.3.1 Imaging the Adhesive by ESEMp. 69
4.3.2 The Influence of Surface Properties on Adhesion and Adhesive Spreadingp. 70
4.3.3 Nanomechanical and Viscoelastic Properties of the Spore Adhesivep. 72
4.3.4 Adhesive Strength of the Whole Spore Systemp. 74
4.4 Conclusions and Further Perspectivesp. 74
Referencesp. 76
5 Diatom Adhesives: Molecular and Mechanical Propertiesp. 79
5.1 Diatoms and Adhesionp. 79
5.1.1 Diatom Morphologyp. 79
5.1.2 Significance of Diatom Adhesionp. 79
5.1.3 Diatom Adhesion Strategiesp. 81
5.1.4 General Composition of Diatom Mucilagesp. 81
5.2 Adhesion and Gliding of Raphid Diatomsp. 82
5.2.1 Adhesion and Gliding Behaviourp. 82
5.2.2 Mechanism of Raphid Diatom Adhesion and Glidingp. 83
5.2.3 Fine Structure of Raphid Diatom Mucilagesp. 85
5.2.4 Nanomechanical Properties Determined by AFMp. 89
5.2.5 Molecular Compositionp. 91
5.3 Sessile Adhesionp. 93
5.3.1 Physical Properties of Adhesive Pads with AFMp. 94
5.3.2 Molecular Composition and Chemical Properties of Stalks: Achnanthes longipesp. 96
5.4 Concluding Remarksp. 99
Referencesp. 99
6 Phenolic-based Adhesives of Marine Brown Algaep. 105
6.1 Introductionp. 105
6.2 Adhesion of Brown Algal Propagulesp. 106
6.2.1 Settlement and Attachment of Brown Algal Sporesp. 106
6.2.2 Adhesion of Fucoid Zygotesp. 107
6.3 Secretion of Brown Algal Phenolics and Adhesionp. 109
6.4 Curing Mechanisms Involving Brown Algal Vanadium Peroxidasesp. 111
6.4.1 Brown Algal Vanadium-dependent Haloperoxidasep. 112
6.4.2 In vitro Investigations of Haloperoxidase-mediated Oxidative Cross-linkingp. 113
6.4.3 Requirement for an Efficient Oxidation Mechanism In Situp. 115
6.5 Industrial Potential of Brown Algal Adhesivesp. 116
6.6 Conclusions and Future Prospectsp. 118
Referencesp. 119
7 Chemical Subtleties of Mussel and Polychaete Holdfastsp. 125
7.1 Introductionp. 125
7.2 Protein Deamidationp. 126
7.3 Protein Phosphorylationp. 129
7.4 Dopa Chemistryp. 131
7.4.1 Gradientsp. 131
7.4.2 Metal Bindingp. 134
7.4.3 Cross-linkingp. 136
7.4.4 Michael Additions: Aminesp. 138
7.4.5 Michael Thiol Additionsp. 138
7.5 Conclusionp. 139
Referencesp. 140
8 Barnacle Underwater Attachmentp. 145
8.1 Introductionp. 145
8.2 Barnacle Attachmentp. 146
8.2.1 A Unique Sessile Crustaceanp. 146
8.2.2 Attachment in the Life Cyclep. 147
8.2.3 Biosynthesis and Secretion of Underwater Cementp. 147
8.3 Barnacle Underwater Cementp. 148
8.3.1 Cement Layerp. 148
8.3.2 Cement Samplep. 149
8.3.3 Cement Naturep. 149
8.3.4 Multi-functionality in Underwater Attachmentp. 150
8.3.5 Cement Proteins and Possible Functionsp. 151
8.3.6 Possible Molecular Model for Barnacle Underwater Attachmentp. 158
8.4 Comparison with Other Holdfast Proteinsp. 160
8.5 Applications to Material Sciencep. 162
8.6 Concluding Remarksp. 163
Referencesp. 163
9 The Biochemistry and Mechanics of Gastropod Adhesive Gelsp. 167
9.1 Introductionp. 167
9.2 Backgroundp. 168
9.3 Adhesive Gels Used by Different Animalsp. 168
9.4 Principles of Gel Mechanicsp. 170
9.5 Adhesive Gel Structurep. 173
9.6 The Role of Different Proteins in Adhesionp. 176
9.7 Mechanisms of Crosslinkingp. 178
9.8 Comparison of Gel Structure Among Gastropodsp. 179
9.9 Conclusionp. 180
Referencesp. 180
10 Adhesive Secretions in Echinoderms: An Overviewp. 183
10.1 Introductionp. 183
10.2 Tube Feetp. 183
10.3 Larval Adhesive Organsp. 189
10.4 Cuvierian Tubulesp. 194
10.5 Comparisons of Echinoderm Adhesives with Other Marine Bioadhesivesp. 197
10.6 Conclusionp. 202
Referencesp. 203
11 An Adhesive Secreted by Australian Frogs of the Genus Notadenp. 207
11.1 Introductionp. 207
11.2 Preliminary Field and Laboratory Datap. 208
11.3 Adhesive Collectionp. 209
11.4 Solubilisation and Solidificationp. 210
11.5 Mechanical Propertiesp. 211
11.6 Biocompatibilityp. 214
11.7 Biochemical Studiesp. 215
11.7.1 Colourp. 216
11.7.2 CD Spectrap. 216
11.7.3 Amino Acid Analysisp. 216
11.7.4 Protein Fractionationp. 217
11.8 Applicationsp. 219
11.9 Conclusionsp. 221
Referencesp. 222
12 Properties, Principles, and Parameters of the Gecko Adhesive Systemp. 225
12.1 Introductionp. 225
12.2 Adhesive Properties of Gecko Setaep. 227
12.2.1 Properties (1) Anisotropic Attachment and (2) High Adhesion Coefficient [mu prime]p. 227
12.2.2 Property (3) Low Detachment Forcep. 229
12.2.3 Integration of Body and Leg Dynamics with Setal Attachment and Detachmentp. 230
12.2.4 Molecular Mechanism of Gecko Adhesionp. 231
12.2.5 Property (4) Material Independent Adhesionp. 233
12.3 Anti-adhesive Properties of Gecko Setaep. 238
12.3.1 Properties (5) Self-cleaning and (6) Anti-self-adhesionp. 238
12.3.2 Property (7) Nonsticky Default Statep. 239
12.4 Modeling Adhesive Nanostructuresp. 241
12.4.1 Effective Modulus of a Setal Arrayp. 241
12.4.2 Rough Surface and Antimatting Conditionsp. 244
12.5 Scalingp. 244
12.5.1 Scaling of Pad Area and Spatular Sizep. 245
12.5.2 Scaling of Stressp. 245
12.6 Comparison of Conventional and Gecko Adhesivesp. 246
12.7 Gecko-inspired Synthetic Adhesive Nanostructuresp. 248
12.8 Future Directions in the Study of the Gecko Adhesive Systemp. 250
Referencesp. 251
13 Biomimetic Adhesive Polymers Based on Mussel Adhesive Proteinsp. 257
13.1 Introductionp. 257
13.2 Mussel Adhesive Proteins and DOPAp. 258
13.3 Medical Adhesives: Requirements and Existing Materialsp. 261
13.4 MAP-Mimetic Adhesive Polymersp. 262
13.4.1 Extraction and Expression of MAPsp. 263
13.4.2 Chemical Synthesis of MAP Mimetic-Polymersp. 264
13.5 Antifouling MAP Mimetic Polymersp. 269
13.6 Conclusionsp. 272
Referencesp. 273
Subject Indexp. 279