Skip to:Content
|
Bottom
Cover image for Hydrodynamics and water quality : modeling rivers, lakes, and estuaries
Title:
Hydrodynamics and water quality : modeling rivers, lakes, and estuaries
Personal Author:
Publication Information:
Hoboken, NJ : John Wiley & Sons, 2008
Physical Description:
xxii, 676 p. : ill., maps ; 24 cm. + 1 CD-ROM
ISBN:
9780470135433
General Note:
Accompanied by CD-ROM : CP 014868

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010172880 TC175 J59 2008 Open Access Book Book
Searching...
Searching...
30000010194037 TC175 J59 2008 Open Access Book Book
Searching...

On Order

Summary

Summary

This reference gets you up to speed on mathematical modeling for environmental and water resources management. With a practical, application-oriented approach, it discusses hydrodynamics, sediment processes, toxic fate and transport, and water quality and eutrophication in rivers, lakes, estuaries, and coastal waters. A companion CD-ROM includes a modeling package and electronic files of numerical models, case studies, and model results. This is a core reference for water quality professionals and an excellent text for graduate students.


Author Notes

Zhen-Gang (Jeff) Ji, PhD, DES, PE, is an oceanographer and numerical modeler with the Minerals Management Service


Table of Contents

Forewordp. xiii
Prefacep. xv
Acknowledgmentsp. xvii
1 Introductionp. 1
1.1 Overviewp. 1
1.2 Understanding Surface Watersp. 4
1.3 Modeling of Surface Watersp. 7
1.4 About This Bookp. 11
2 Hydrodynamicsp. 13
2.1 Hydrodynamic Processesp. 14
2.1.1 Water Densityp. 14
2.1.2 Conservation Lawsp. 16
2.1.3 Advection and Dispersionp. 20
2.1.4 Mass Balance Equationp. 25
2.1.5 Atmospheric Forcingsp. 27
2.1.6 Coriolis Force and Geostrophic Flowp. 32
2.2 Governing Equationsp. 35
2.2.1 Basic Approximationsp. 35
2.2.2 Equations in Cartesian Coordinatesp. 38
2.2.3 Vertical Mixing and Turbulence Modelsp. 48
2.2.4 Equations in Curvilinear Coordinatesp. 52
2.2.5 Initial Conditions and Boundary Conditionsp. 58
2.3 Temperaturep. 62
2.3.1 Heatflux Componentsp. 65
2.3.2 Temperature Formulationsp. 73
2.4 Hydrodynamic Modelingp. 77
2.4.1 Hydrodynamic Parameters and Data Requirementsp. 78
2.4.2 Case Study I: Lake Okeechobeep. 82
2.4.3 Case Study II: St. Lucie Estuary and Indian River Lagoonp. 98
3 Sediment Transportp. 113
3.1 Overviewp. 113
3.1.1 Properties of Sedimentp. 114
3.1.2 Problems Associated with Sedimentp. 117
3.2 Sediment Processesp. 119
3.2.1 Particle Settlingp. 120
3.2.2 Horizontal Transport of Sedimentp. 122
3.2.3 Resuspension and Depositionp. 126
3.2.4 Equations for Sediment Transportp. 128
3.2.5 Turbidity and Secchi Depthp. 130
3.3 Cohesive Sedimentp. 134
3.3.1 Vertical Profiles of Cohesive Sediment Concentrationsp. 136
3.3.2 Flocculationp. 138
3.3.3 Settling of Cohesive Sedimentp. 139
3.3.4 Deposition of Cohesive Sedimentp. 143
3.3.5 Resuspension of Cohesive Sedimentp. 145
3.4 Noncohesive Sedimentp. 149
3.4.1 Shields Diagramp. 149
3.4.2 Settling and Equilibrium Concentrationp. 152
3.4.3 Bed Load Transportp. 155
3.5 Sediment Bedp. 156
3.5.1 Characteristics of Sediment Bedp. 157
3.5.2 A Model for Sediment Bedp. 159
3.6 Wind Wavesp. 162
3.6.1 Wave Processesp. 163
3.6.2 Wind Wave Characteristicsp. 168
3.6.3 Wind Wave Modelsp. 170
3.6.4 Combined Flows of Wind Waves and Currentsp. 172
3.6.5 Case Study: Wind Wave Modeling in Lake Okeechobeep. 174
3.7 Sediment Transport Modelingp. 179
3.7.1 Sediment Parameters and Data Requirementsp. 180
3.7.2 Case Study I: Lake Okeechobeep. 182
3.7.3 Case Study II: Blackstone Riverp. 191
4 Pathogens and Toxicsp. 201
4.1 Overviewp. 201
4.2 Pathogensp. 203
4.2.1 Bacteria, Viruses, and Protozoap. 204
4.2.2 Pathogen Indicatorsp. 206
4.2.3 Processes Affecting Pathogensp. 208
4.3 Toxic Substancesp. 210
4.3.1 Toxic Organic Chemicalsp. 213
4.3.2 Metalsp. 214
4.3.3 Sorption and Desorptionp. 216
4.4 Fate and Transport Processesp. 220
4.4.1 Mathematical Formulationsp. 220
4.4.2 Processes Affecting Fate and Decayp. 223
4.5 Contaminant Modelingp. 229
4.5.1 Case Study I: St. Lucie Estuary and Indian River Lagoonp. 230
4.5.2 Case Study II: Rockford Lakep. 239
5 Water Quality and Eutrophicationp. 247
5.1 Overviewp. 248
5.1.1 Eutrophicationp. 248
5.1.2 Algaep. 250
5.1.3 Nutrientsp. 253
5.1.4 Dissolved Oxygenp. 261
5.1.5 Governing Equations for Water Quality Processesp. 262
5.2 Algaep. 274
5.2.1 Algal Biomass and Chlorophyllp. 275
5.2.2 Equations for Algal Processesp. 277
5.2.3 Algal Growthp. 279
5.2.4 Algal Reductionp. 285
5.2.5 Silica and Diatomp. 289
5.2.6 Periphytonp. 292
5.3 Organic Carbonp. 294
5.3.1 Decomposition of Organic Carbonp. 296
5.3.2 Equations for Organic Carbonp. 296
5.3.3 Heterotrophic Respiration and Dissolutionp. 298
5.4 Phosphorusp. 299
5.4.1 Equations for Phosphorus State Variablesp. 302
5.4.2 Phosphorus Processesp. 305
5.5 Nitrogenp. 308
5.5.1 Forms of Nitrogenp. 309
5.5.2 Equations for Nitrogen State Variablesp. 311
5.5.3 Nitrogen Processesp. 317
5.6 Dissolved Oxygenp. 322
5.6.1 Biochemical Oxygen Demandp. 325
5.6.2 Processes and Equations of Dissolved Oxygenp. 328
5.6.3 Effects of Photosynthesis and Respirationp. 331
5.6.4 Reaerationp. 332
5.6.5 Chemical Oxygen Demandp. 336
5.7 Sediment Fluxesp. 336
5.7.1 Sediment Diagenesis Modelp. 338
5.7.2 Depositional Fluxesp. 344
5.7.3 Diagenesis Fluxesp. 347
5.7.4 Sediment Fluxesp. 348
5.7.5 Silicap. 365
5.7.6 Coupling with Sediment Resuspensionp. 366
5.8 Submerged Aquatic Vegetationp. 368
5.8.1 Introductionp. 369
5.8.2 Equations for a SAV Modelp. 371
5.8.3 Coupling with the Water Quality Modelp. 378
5.9 Water Quality Modelingp. 385
5.9.1 Model Parameters and Data Requirementsp. 387
5.9.2 Case Study I: Lake Okeechobeep. 390
5.9.3 Case Study II: St. Lucie Estuary and Indian River Lagoonp. 406
6 External Sources and TMDLp. 417
6.1 Point Sources and Nonpoint Sourcesp. 417
6.2 Atmospheric Depositionp. 420
6.3 Wetlands and Groundwaterp. 424
6.3.1 Wetlandsp. 424
6.3.2 Groundwaterp. 427
6.4 Watershed Processes and TMDL Developmentp. 430
6.4.1 Watershed Processesp. 430
6.4.2 Total Maximum Daily Load (TMDL)p. 433
7 Mathematical Modeling and Statistical Analysesp. 437
7.1 Mathematical Modelsp. 437
7.1.1 Numerical Modelsp. 440
7.1.2 Model Selectionp. 444
7.1.3 Spatial Resolution and Temporal Resolutionp. 447
7.2 Statistical Analysesp. 449
7.2.1 Statistics for Model Performance Evaluationp. 450
7.2.2 Correlation and Regressionp. 452
7.2.3 Spectral Analysisp. 454
7.2.4 Empirical Orthogonal Function (EOF)p. 457
7.2.5 EOF Case Studyp. 460
7.3 Model Calibration and Verificationp. 466
7.3.1 Model Calibrationp. 467
7.3.2 Model Verification and Validationp. 470
7.3.3 Sensitivity Analysisp. 471
8 Riversp. 473
8.1 Characteristics of Riversp. 473
8.2 Hydrodynamic Processes in Riversp. 477
8.2.1 River Flow and the Manning Equationp. 477
8.2.2 Advection and Dispersion in Riversp. 481
8.2.3 Flow over Damsp. 482
8.3 Sediment and Water Quality Processes in Riversp. 485
8.3.1 Sediment and Contaminants in Riversp. 485
8.3.2 Impacts of River Flow on Water Qualityp. 486
8.3.3 Eutrophication and Periphyton in Riversp. 488
8.3.4 Dissolved Oxygen in Riversp. 489
8.4 River Modelingp. 492
8.4.1 Case Study I: Blackstone Riverp. 493
8.4.2 Case Study II: Susquehanna Riverp. 503
9 Lakes and Reservoirsp. 509
9.1 Characteristics of Lakes and Reservoirsp. 509
9.1.1 Key Factors Controlling a Lakep. 510
9.1.2 Vertical Stratificationp. 511
9.1.3 Biological Zones in Lakesp. 514
9.1.4 Characteristics of Reservoirsp. 515
9.1.5 Lake Pollution and Eutrophicationp. 519
9.2 Hydrodynamic Processesp. 521
9.2.1 Inflow, Outflow, and Water Budgetp. 522
9.2.2 Wind Forcing and Vertical Circulationsp. 525
9.2.3 Seasonal Variations of Stratificationp. 527
9.2.4 Gyresp. 530
9.2.5 Seichesp. 532
9.3 Sediment and Water Quality Processes in Lakesp. 538
9.3.1 Sediment Deposition in Reservoirs and Lakesp. 538
9.3.2 Algae and Nutrient Stratificationsp. 540
9.3.3 Dissolved Oxygen Stratificationsp. 543
9.3.4 Internal Cycling and Limiting Functions in Shallow Lakesp. 546
9.4 Lake Modelingp. 550
9.4.1 Case Study I: Lake Tenkillerp. 551
9.4.2 Case Study II: Lake Okeechobeep. 560
10 Estuaries and Coastal Watersp. 567
10.1 Introductionp. 567
10.2 Tidal Processesp. 572
10.2.1 Tidesp. 572
10.2.2 Tidal Currentsp. 576
10.2.3 Harmonic Analysisp. 580
10.3 Hydrodynamic Processes in Estuariesp. 584
10.3.1 Salinityp. 585
10.3.2 Estuarine Circulationp. 586
10.3.3 Stratifications of Estuariesp. 588
10.3.4 Flushing Timep. 593
10.4 Sediment and Water Quality Processes in Estuariesp. 600
10.4.1 Sediment Transport under Tidal Forcingp. 600
10.4.2 Flocculation of Cohesive Sediment and Sediment Trappingp. 601
10.4.3 Eutrophication in Estuariesp. 604
10.5 Estuarine and Coastal Modelingp. 607
10.5.1 Open Boundary Conditionsp. 609
10.5.2 Case Study I: Morro Bayp. 613
10.5.3 Case Study II: St. Lucie Estuary and Indian River Lagoonp. 626
Appendix A Environmental Fluid Dynamics Codep. 635
A1 Overviewp. 635
A2 Hydrodynamicsp. 636
A3 Sediment Transportp. 637
A4 Toxic Chemical Transport and Fatep. 637
A5 Water Quality and Eutrophicationp. 637
A6 Numerical Schemesp. 638
A7 Documentation and Application Aidsp. 639
Appendix B Conversion Factorsp. 641
Appendix C Contents of Electronic Filesp. 645
C1 Channel Modelp. 646
C2 St. Lucie Estuary and Indian River Lagoon Modelp. 646
C3 Lake Okeechobee Environmental Modelp. 646
C4 Documentation and Utility Programsp. 647
Bibliographyp. 649
Indexp. 671
Go to:Top of Page