Skip to:Content
|
Bottom
Cover image for The method of moments in electromagnetics
Title:
The method of moments in electromagnetics
Personal Author:
Publication Information:
London, UK : Chapman & Hall, 2008
Physical Description:
xv, 272 p. : ill. ; 25 cm.
ISBN:
9781420061451

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010185317 QC760.54 G43 2008 Open Access Book Book
Searching...

On Order

Summary

Summary

Responding to the need for a clear, up-to-date introduction to the field, The Method of Moments in Electromagnetics explores surface integral equations in electromagnetics and presents their numerical solution using the method of moments (MOM) technique. It provides the numerical implementation aspects at a nuts-and-bolts level while discussing integral equations and electromagnetic theory at a higher level.

The author covers a range of topics in this area, from the initial underpinnings of the MOM to its current applications. He first reviews the frequency-domain electromagnetic theory and then develops Green's functions and integral equations of radiation and scattering. Subsequent chapters solve these integral equations for thin wires, bodies of revolution, and two- and three-dimensional problems. The final chapters examine the contemporary fast multipole method and describe some commonly used methods of numerical integration, including the trapezoidal rule, Simpson's rule, area coordinates, and Gaussian quadrature on triangles. The text derives or summarizes the matrix elements used in every MOM problem and explains the approach used in and results of each example.

This book provides both the information needed to solve practical electromagnetic problems using the MOM and the knowledge necessary to understand more advanced topics in the field.


Table of Contents

Prefacep. ix
Acknowledgmentsp. xiii
About the Authorp. xv
Chapter 1 Computational Electromagenticsp. 1
1.1 Computational Electromagnetics Algorithmsp. 1
1.1.1 Low-Frequency Methodsp. 2
1.1.2 High-Frequency Methodsp. 2
Referencesp. 4
Chapter 2 A Brief Review of Electromagneticsp. 5
2.1 Maxwell's Equationsp. 5
2.2 Electromagnetic Boundary Conditionsp. 6
2.3 Formulations for Radiationp. 6
2.3.1 Three-Dimensional Green's Functionp. 8
2.3.2 Two-Dimensional Green's Functionp. 9
2.4 Vector Potentialsp. 10
2.4.1 Magnetic Vector Potentialp. 11
2.4.2 Electric Vector Potentialp. 12
2.4.3 Comparison of Radiation Formulasp. 13
2.5 Near and Far Fieldsp. 14
2.5.1 Near Fieldp. 15
2.5.2 Far Fieldp. 16
2.6 Equivalent Problemsp. 18
2.6.1 Surface Equivalentp. 18
2.6.2 Physical Equivalentp. 20
2.7 Surface Integral Equationsp. 25
2.7.1 Electric Field Integral Equationp. 25
2.7.2 Magnetic Field Integral Equationp. 26
2.7.3 Combined Field Integral Equationp. 28
Referencesp. 30
Chapter 3 The Method of Momentsp. 33
3.1 Electrostatic Problemsp. 33
3.1.1 Charged Wirep. 34
3.1.2 Charged Platep. 39
3.2 The Method of Momentsp. 43
3.2.1 Point Matchingp. 44
3.2.2 Galerkin's Methodp. 44
3.3 Common Two-Dimensional Basis Functionsp. 45
3.3.1 Pulse Functionsp. 45
3.3.2 Piecewise Triangular Functionsp. 45
3.3.3 Piecewise Sinusoidal Functionsp. 46
3.3.4 Entire-Domain Functionsp. 47
3.3.5 Number of Basis Functionsp. 47
3.4 Solution of Matrix Equationsp. 48
3.4.1 Gaussian Eliminationp. 48
3.4.2 LU Decompositonp. 50
3.4.3 Condition Numberp. 52
3.4.4 Iterative Methodsp. 53
3.4.5 Examplesp. 57
3.4.6 Commonly Used Matrix Algebra Softwarep. 58
Referencesp. 61
Chapter 4 Thin Wiresp. 63
4.1 Thin Wire Approximationp. 63
4.2 Thin Wire Excitationsp. 65
4.2.1 Delta-Gap Sourcep. 65
4.2.2 Magnetic Frillp. 66
4.2.3 Plane Wavep. 67
4.3 Solving Hallen's Equationp. 68
4.3.1 Symmetric Problemsp. 69
4.3.2 Asymmetric Problemsp. 71
4.4 Solving Pocklington's Equationp. 72
4.4.1 Solution by Pulse Functions and Point Matchingp. 73
4.5 Thin Wires of Arbitrary Shapep. 73
4.5.1 Redistribution of EFIE Differential Operatorsp. 74
4.5.2 Solution Using Triangle Basis and Testing Functionsp. 75
4.5.3 Solution Using Sinusoidal Basis and Testing Functionsp. 77
4.5.4 Lumped and Distributed Impedancesp. 78
4.6 Examplesp. 79
4.6.1 Comparison of Thin Wire Modelsp. 79
4.6.2 Circular Loop Antennap. 83
4.6.3 Folded Dipole Antennap. 86
4.6.4 Two-Wire Transmission Linep. 87
4.6.5 Matching a Yagi Antennap. 89
Referencesp. 94
Chapter 5 Two-Dimensional Problemsp. 95
5.1 Two-Dimensional EFIEp. 95
5.1.1 EFIE for a Strip: TM Polarizationp. 95
5.1.2 Generalized EFIE: TM Polarizationp. 100
5.1.3 EFIE for a Strip: TE Polariationp. 102
5.1.4 Generalized EFIE: TE Polarizationp. 107
5.2 Two-Dimensional MFIEp. 109
5.2.1 MFIE: TM Polarizationp. 109
5.2.2 MFIE: TE Polarizationp. 111
5.3 Examplesp. 113
5.3.1 Scattering by an Infinite Cylinder: TM Polarizationp. 113
5.3.2 Scattering by an Infinite Cylinder: TE Polarizationp. 115
Referencesp. 124
Chapter 6 Bodies of Revolutionp. 125
6.1 BOR Surface Descriptionp. 125
6.2 Surface Current Expansion on a BORp. 126
6.3 EFIE for a Conducting BORp. 127
6.3.1 EFIE Matrix Elementsp. 127
6.3.2 Excitationp. 130
6.3.3 Scattered Fieldp. 134
6.4 MFIE for a Conducting BORp. 136
6.4.1 MFIE Matrix Elementsp. 137
6.4.2 Excitationp. 140
6.4.3 Scattered Fieldp. 141
6.5 Notes on Software Implementationp. 141
6.5.1 Parallelizationp. 141
6.5.2 Convergencep. 142
6.6 Examplesp. 142
6.6.1 Galaxyp. 142
6.6.2 Conducting Spherep. 142
6.6.3 EMCC Benchmark Targetsp. 145
6.6.4 Biconic Reentry Vehiclep. 152
6.6.5 Summary of Examplesp. 159
Referencesp. 159
Chapter 7 Three-Dimensional Problemsp. 161
7.1 Representation of Three-Dimensional Surfacesp. 161
7.2 Surface Currents on a Trianglep. 164
7.2.1 Edge Finding Algorithmp. 165
7.3 EFIE for Three-Dimensional Conducting Surfacesp. 167
7.3.1 EFIE Matrix Elementsp. 167
7.3.2 Singular Matrix Element Evaluationp. 168
7.3.3 EFIE Excitation Vector Elementsp. 176
7.3.4 Radiated Fieldp. 178
7.4 MFIE for Three-Dimensional Conducting Surfacesp. 179
7.4.1 MFIE Matrix Elementsp. 179
7.4.2 MFIE Excitation Vector Elementsp. 184
7.4.3 Radiated Fieldp. 184
7.4.4 Accuracy of RWG Functions in MFIEp. 184
7.5 Notes on Software Implementationp. 185
7.5.1 Memory Managementp. 185
7.5.2 Parallelizationp. 185
7.6 Considerations for Modeling with Trianglesp. 187
7.6.1 Triangle Aspect Ratiosp. 187
7.6.2 Watertight Meshes and T-Junctionsp. 188
7.7 Examplesp. 188
7.7.1 Serenityp. 189
7.7.2 RCS of a Spherep. 189
7.7.3 EMCC Plate Benchmark Targetsp. 189
7.7.4 Strip Dipole Antennap. 198
7.7.5 Bowtie Antennap. 199
7.7.6 Archimedean Spiral Antennap. 201
7.7.7 Summary of Examplesp. 204
Referencesp. 205
Chapter 8 The Fast Multipole Methodp. 209
8.1 The Matrix-Vector Productp. 210
8.2 Addition Theoremp. 210
8.2.1 Wave Translationp. 212
8.3 FMM Matrix Elementsp. 213
8.3.1 EFIE Matrix Elementsp. 213
8.3.2 MFIE Matrix Elementsp. 214
8.3.3 CFIE Matrix Elementsp. 215
8.3.4 Matrix Transposep. 215
8.4 One-Level Fast Multipole Algorithmp. 215
8.4.1 Grouping of Basis Functionsp. 215
8.4.2 Near and Far Groupsp. 216
8.4.3 Number of Multipolesp. 216
8.4.4 Sampling Rates and Integrationp. 218
8.4.5 Transfer Functionsp. 219
8.4.6 Radiation and Receive Functionsp. 220
8.4.7 Near-Matrix Elementsp. 220
8.4.8 Matrix-Vector Productp. 221
8.4.9 Computational Complexityp. 222
8.5 Multi-Level Fast Multipole Algorithm (MLFMA)p. 222
8.5.1 Grouping via Octreep. 222
8.5.2 Matrix-Vector Productp. 223
8.5.3 Interpolation Algorithmsp. 227
8.5.4 Transfer Functionsp. 229
8.5.5 Radiation and Receive Functionsp. 230
8.5.6 Interpolation Steps in MLFMAp. 230
8.5.7 Computational Complexityp. 231
8.6 Notes on Software Implementationp. 231
8.6.1 Initial Guess in Iterative Solutionp. 231
8.6.2 Memory Managementp. 232
8.6.3 Parallelizationp. 234
8.6.4 Vectorizationp. 234
8.7 Preconditioningp. 235
8.7.1 Diagonal Preconditionerp. 235
8.7.2 Block Diagonal Preconditionerp. 236
8.7.3 Inverse LU Preconditionerp. 236
8.7.4 Sparse Approximate Inversep. 237
8.8 Examplesp. 240
8.8.1 Bistatic RCS of a Spherep. 240
8.8.2 EMCC Benchmark Targetsp. 240
8.8.3 Summary of Examplesp. 245
Referencesp. 252
Chapter 9 Integrationp. 255
9.1 One-Dimensional Integrationp. 255
9.1.1 Centroidal Approximationp. 255
9.1.2 Trapezoidal Rulep. 256
9.1.3 Simpson's Rulep. 258
9.1.4 One-Dimensional Gaussian Quadraturep. 259
9.2 Integration over Trianglesp. 260
9.2.1 Simplex Coordinatesp. 260
9.2.2 Radiation Integrals with a Constant Sourcep. 262
9.2.3 Radiation Integrals with a Linear Sourcep. 265
9.2.4 Gaussian Quadrature on Trianglesp. 267
Referencesp. 269
Indexp. 271
Go to:Top of Page