Skip to:Content
|
Bottom
Cover image for Solid state physics : an introduction
Title:
Solid state physics : an introduction
Personal Author:
Series:
Physics textbook
Publication Information:
Weinheim : Wiley-VCH, 2008
Physical Description:
ix, 224 p. : ill. ; 24 cm.
ISBN:
9783527408610

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010201367 QC176 H63 2008 Open Access Book Book
Searching...

On Order

Summary

Summary

Filling a gap in the literature for a brief course in solid state physics, this is a clear and concise introduction that not only describes all the basic phenomena and concepts, but also discusses such advanced issues as magnetism and superconductivity. This textbook
assumes only basic mathematical knowledge on the part of the reader and includes more than 100 discussion questions and some 70 problems, with solutions as well as further supplementary material available free to lecturers from the Wiley-VCH website.


Author Notes

Philip Hofmann studied physics at the Free University, Berlin and did his PhD research at the Fritz-Haber-Institute of the Max Planck Society, also in Berlin. He stayed at the Oak Ridge National Laboratory, USA, as a Feodor Lynen Fellow of the Alexander von Humboldt Foundation. In 1998, he moved to the University of Aarhus, Denmark, where he is associated with the Synchrotron Radiation Source and the Interdisciplinary Nanoscience Center (iNANO). His research is primarily focused on the electronic structure of solids and their surfaces.


Table of Contents

Prefacep. IX
1 Chemical Bonding in Solidsp. 1
1.1 Attractive and Repulsive Forcesp. 1
1.2 Ionic Bondingp. 2
1.3 Covalent Bondingp. 3
1.4 Metallic Bondingp. 5
1.5 Hydrogen Bondingp. 6
1.6 van der Waals Bondingp. 6
1.7 Discussion and Problemsp. 7
2 Crystal Structuresp. 9
2.1 General Description of Crystal Structuresp. 9
2.2 Some Important Crystal Structuresp. 11
2.2.1 Cubic Structuresp. 11
2.2.2 Close-Packed Structuresp. 13
2.2.3 Covalent Structuresp. 14
2.3 Crystal Structure Determinationp. 15
2.3.1 X-Ray Diffractionp. 15
2.3.1.1 Bragg Theoryp. 15
2.3.1.2 Lattice Planes and Miller Indicesp. 16
2.3.1.3 General Diffraction Theoryp. 17
2.3.1.4 The Reciprocal Latticep. 19
2.3.1.5 The Meaning of the Reciprocal Latticep. 20
2.3.1.6 X-Ray Diffraction from Periodic Structuresp. 22
2.3.1.7 The Ewald Constructionp. 22
2.3.1.8 Relation Between Bragg and Laue Theoryp. 23
2.3.2 Other Methodsp. 24
2.3.3 Inelastic Scatteringp. 24
2.4 Discussion and Problemsp. 24
3 Mechanical Propertiesp. 29
3.1 Elastic Deformationp. 31
3.1.1 Macroscopic Picturep. 31
3.1.1.1 Elastic Constantsp. 31
3.1.1.2 Poisson's Ratiop. 31
3.1.1.3 Relation Between Elastic Constantsp. 33
3.1.2 Microscopic Picturep. 33
3.2 Plastic Deformationp. 35
3.2.1 Estimate of the Yield Stressp. 35
3.2.2 Point Defects and Dislocationsp. 37
3.2.3 The Role of Defects in Plastic Deformationp. 38
3.2.4 Fracturep. 39
3.3 Discussion and Problemsp. 40
4 Thermal Properties of the Latticep. 43
4.1 Lattice Vibrationsp. 43
4.1.1 A Simple Harmonic Oscillatorp. 43
4.1.2 An Infinite Chain of Atomsp. 44
4.1.2.1 One Atom Per Unit Cellp. 44
4.1.2.2 The First Brillouin Zonep. 46
4.1.2.3 Two Atoms Per Unit Cellp. 47
4.1.3 A Finite Chain of Atomsp. 48
4.1.4 Quantized Vibrations, Phononsp. 50
4.1.5 Three-Dimensional Solidsp. 51
4.1.5.1 Generalization to Three Dimensionsp. 51
4.1.5.2 Estimation of the Vibrational Frequencies from the Elastic Constantsp. 53
4.2 Heat Capacity of the Latticep. 54
4.2.1 Classical Theory and Experimental Resultsp. 54
4.2.2 Einstein Modelp. 55
4.2.3 Debye Modelp. 58
4.3 Thermal Conductivityp. 62
4.4 Thermal Expansionp. 64
4.5 Allotropic Phase Transitions and Meltingp. 66
4.6 Discussion and Problemsp. 68
5 Electronic Properties of Metals: Classical Approachp. 71
5.1 Basic Assumptions of the Drude Modelp. 71
5.2 Results from the Drude Modelp. 73
5.2.1 DC Electrical Conductivityp. 73
5.2.2 Hall Effectp. 75
5.2.3 Optical Reflectivity of Metalsp. 76
5.2.4 The Wiedemann-Franz Lawp. 79
5.3 Shortcomings of the Drude Modelp. 80
5.4 Discussion and Problemsp. 81
6 Electronic Properties of Metals: Quantum Mechanical Approachp. 83
6.1 The Idea of Energy Bandsp. 84
6.2 Free Electron Modelp. 86
6.2.1 The Quantum Mechanical Eigenstatesp. 86
6.2.2 Electronic Heat Capacityp. 90
6.2.3 The Wiedemann-Franz Lawp. 92
6.2.4 Screeningp. 92
6.3 The General Form of the Electronic Statesp. 93
6.4 Nearly Free Electron Modelp. 96
6.5 Energy Bands in Real Solidsp. 100
6.6 Transport Propertiesp. 104
6.7 Brief Review of Some Key Ideasp. 108
6.8 Discussion and Problemsp. 109
7 Semiconductorsp. 113
7.1 Intrinsic Semiconductorsp. 114
7.1.1 Temperature Dependence of the Carrier Densityp. 116
7.2 Doped Semiconductorsp. 121
7.2.1 n and p Dopingp. 121
7.2.2 Carrier Densityp. 123
7.3 Conductivity of Semiconductorsp. 125
7.4 Semiconductor Devicesp. 126
7.4.1 The pn Junctionp. 126
7.4.2 Transistorsp. 130
7.4.3 Optoelectronic Devicesp. 132
7.5 Discussion and Problemsp. 133
8 Magnetismp. 137
8.1 Macroscopic Descriptionp. 137
8.2 Magnetic Effects in Atomsp. 139
8.3 Weak Magnetism in Solidsp. 143
8.3.1 Diamagnetismp. 144
8.3.1.1 Diamagnetism of the Ionsp. 144
8.3.1.2 Diamagnetism of Free Electronsp. 144
8.3.2 Paramagnetismp. 144
8.3.2.1 Curie Paramagnetismp. 144
8.3.2.2 Pauli Paramagnetismp. 146
8.4 Magnetic Orderingp. 148
8.4.1 Magnetic Ordering and the Exchange Interactionp. 149
8.4.2 Temperature Dependence of the Orderingp. 152
8.4.3 Ferromagnetic Domainsp. 154
8.4.4 Hysteresisp. 154
8.5 Discussion and Problemsp. 156
9 Dielectricsp. 161
9.1 Macroscopic Descriptionp. 161
9.2 Microscopic Polarizationp. 163
9.3 The Local Fieldp. 165
9.4 Frequency Dependence of the Dielectric Constantp. 166
9.5 Other Effectsp. 171
9.5.1 Impurities in Dielectricsp. 171
9.5.2 Ferroelectricityp. 171
9.5.3 Piezoelectricityp. 173
9.5.4 Dielectric Breakdownp. 174
9.6 Discussion and Problemsp. 174
10 Superconductivityp. 177
10.1 Basic Experimental Factsp. 178
10.1.1 Zero Resistivityp. 178
10.1.2 The Meissner Effectp. 181
10.1.3 The Isotope Effectp. 183
10.2 Some Theoretical Aspectsp. 184
10.2.1 Phenomenological Theoryp. 184
10.2.2 Microscopic BCS Theoryp. 186
10.3 Experimental Detection of the Gapp. 192
10.4 Coherence of the Superconducting Statep. 194
10.5 Type I and Type II Superconductorsp. 196
10.6 High-Temperature Superconductivityp. 198
10.7 Concluding Remarksp. 199
10.8 Discussion and Problemsp. 200
11 Finite Solids and Nanostructuresp. 203
11.1 Quantum Confinementp. 204
11.2 Surfaces and Interfacesp. 206
11.3 Magnetism on the Nanoscalep. 208
11.4 Discussion and Problemsp. 209
Appendixp. 211
Referencesp. 215
Further Readingp. 217
Physical Constants and Energy Equivalentsp. 219
Indexp. 221
Go to:Top of Page