Skip to:Content
|
Bottom
Cover image for Neural networks and learning machines
Title:
Neural networks and learning machines
Personal Author:
Edition:
3rd ed.
Publication Information:
New Jersey : Prentice Hall, 2009
Physical Description:
xxx, 906 p. : ill. (some col.) ; 24 cm.
ISBN:
9780131471399

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010204502 QA76.87 H395 2009 Open Access Book Book
Searching...

On Order

Summary

Summary

For graduate-level neural network courses offered in the departments of Computer Engineering, Electrical Engineering, and Computer Science.

Neural Networks and Learning Machines, Third Edition is renowned for its thoroughness and readability. This well-organized and completely up-to-date text remains the most comprehensive treatment of neural networks from an engineering perspective. This is ideal for professional engineers and research scientists.

Matlab codes used for the computer experiments in the text are available for download at: http://www.pearsonhighered.com/haykin/

Refocused, revised and renamed to reflect the duality of neural networks and learning machines, this edition recognizes that the subject matter is richer when these topics are studied together. Ideas drawn from neural networks and machine learning are hybridized to perform improved learning tasks beyond the capability of either independently.


Table of Contents

Prefacep. x
Introductionp. 1
1 What is a Neural Network?p. 1
2 The Human Brainp. 6
3 Models of a Neuronp. 10
4 Neural Networks Viewed As Directed Graphsp. 15
5 Feedbackp. 18
6 Network Architecturesp. 21
7 Knowledge Representationp. 24
8 Learning Processesp. 34
9 Learning Tasksp. 38
10 Concluding Remarksp. 45
Notes and Referencesp. 46
Chapter 1 Rosenblatt's Perceptronp. 47
1.1 Introductionp. 47
1.2 Perceptronp. 48
1.3 The Perceptron Convergence Theoremp. 50
1.4 Relation Between the Perceptron and Bayes Classifier for a Gaussian Environmentp. 55
1.5 Computer Experiment: Pattern Classificationp. 60
1.6 The Batch Perceptron Algorithmp. 62
1.7 Summary and Discussionp. 65
Notes and Referencesp. 66
Problemsp. 66
Chapter 2 Model Building through Regressionp. 68
2.1 Introductionp. 68
2.2 Linear Regression Model: Preliminary Considerationsp. 69
2.3 Maximum a Posteriori Estimation of the Parameter Vectorp. 71
2.4 Relationship Between Regularized Least-Squares Estimation and MAP Estimationp. 76
2.5 Computer Experiment: Pattern Classificationp. 77
2.6 The Minimum-Description-Length Principlep. 79
2.7 Finite Sample-Size Considerationsp. 82
2.8 The Instrumental-Variables Methodp. 86
2.9 Summary and Discussionp. 88
Notes and Referencesp. 89
Problemsp. 89
Chapter 3 The Least-Mean-Square Algorithmp. 91
3.1 Introductionp. 91
3.2 Filtering Structure of the LMS Algorithmp. 92
3.3 Unconstrained Optimization: a Reviewp. 94
3.4 The Wiener Filterp. 100
3.5 The Least-Mean-Square Algorithmp. 102
3.6 Markov Model Portraying the Deviation of the LMS Algorithm from the Wiener Filterp. 104
3.7 The Langevin Equation: Characterization of Brownian Motionp. 106
3.8 Kushner's Direct-Averaging Methodp. 107
3.9 Statistical LMS Learning Theory for Small Learning-Rate Parameterp. 108
3.10 Computer Experiment I: Linear Predictionp. 110
3.11 Computer Experiment II: Pattern Classificationp. 112
3.12 Virtues and Limitations of the LMS Algorithmp. 113
3.13 Learning-Rate Annealing Schedulesp. 115
3.14 Summary and Discussionp. 117
Notes and Referencesp. 118
Problemsp. 119
Chapter 4 Multilayer Perceptronsp. 122
4.1 Introductionp. 123
4.2 Some Preliminariesp. 124
4.3 Batch Learning and On-Line Learningp. 126
4.4 The Back-Propagation Algorithmp. 129
4.5 XOR Problemp. 141
4.6 Heuristics for Making the Back-Propagation Algorithm Perform Betterp. 144
4.7 Computer Experiment: Pattern Classificationp. 150
4.8 Back Propagation and Differentiationp. 153
4.9 The Hessian and Its Role in On-Line Learningp. 155
4.10 Optimal Annealing and Adaptive Control of the Learning Ratep. 157
4.11 Generalizationp. 164
4.12 Approximations of Functionsp. 166
4.13 Cross-Validationp. 171
4.14 Complexity Regularization and Network Pruningp. 175
4.15 Virtues and Limitations of Back-Propagation Learningp. 180
4.16 Supervised Learning Viewed as an Optimization Problemp. 186
4.17 Convolutional Networksp. 201
4.18 Nonlinear Filteringp. 203
4.19 Small-Scale Versus Large-Scale Learning Problemsp. 209
4.20 Summary and Discussionp. 217
Notes and Referencesp. 219
Problemsp. 221
Chapter 5 Kernel Methods and Radial-Basis Function Networksp. 230
5.1 Introductionp. 230
5.2 Cover's Theorem on the Separability of Patternsp. 231
5.3 The Interpolation Problemp. 236
5.4 Radial-Basis-Function Networksp. 239
5.5 K-Means Clusteringp. 242
5.6 Recursive Least-Squares Estimation of the Weight Vectorp. 245
5.7 Hybrid Learning Procedure for RBF Networksp. 249
5.8 Computer Experiment: Pattern Classificationp. 250
5.9 Interpretations of the Gaussian Hidden Unitsp. 252
5.10 Kernel Regression and Its Relation to RBF Networksp. 255
5.11 Summary and Discussionp. 259
Notes and Referencesp. 261
Problemsp. 263
Chapter 6 Support Vector Machinesp. 268
6.1 Introductionp. 268
6.2 Optimal Hyperplane for Linearly Separable Patternsp. 269
6.3 Optimal Hyperplane for Nonseparable Patternsp. 276
6.4 The Support Vector Machine Viewed as a Kernel Machinep. 281
6.5 Design of Support Vector Machinesp. 284
6.6 XOR Problemp. 286
6.7 Computer Experiment: Pattern Classificationp. 289
6.8 Regression: Robustness Considerationsp. 289
6.9 Optimal Solution of the Linear Regression Problemp. 293
6.10 The Representer Theorem and Related Issuesp. 296
6.11 Summary and Discussionp. 302
Notes and Referencesp. 304
Problemsp. 307
Chapter 7 Regularization Theoryp. 313
7.1 Introductionp. 313
7.2 Hadamard's Conditions for Well-Posednessp. 314
7.3 Tikhonov's Regularization Theoryp. 315
7.4 Regularization Networksp. 326
7.5 Generalized Radial-Basis-Function Networksp. 327
7.6 The Regularized Least-Squares Estimator: Revisitedp. 331
7.7 Additional Notes of Interest on Regularizationp. 335
7.8 Estimation of the Regularization Parameterp. 336
7.9 Semisupervised Learningp. 342
7.10 Manifold Regularization: Preliminary Considerationsp. 343
7.11 Differentiable Manifoldsp. 345
7.12 Generalized Regularization Theoryp. 348
7.13 Spectral Graph Theoryp. 350
7.14 Generalized Representer Theoremp. 352
7.15 Laplacian Regularized Least-Squares Algorithmp. 354
7.16 Experiments on Pattern Classification Using Semisupervised Learningp. 356
7.17 Summary and Discussionp. 359
Notes and Referencesp. 361
Problemsp. 363
Chapter 8 Principal-Components Analysisp. 367
8.1 Introductionp. 367
8.2 Principles of Self-Organizationp. 368
8.3 Self-Organized Feature Analysisp. 372
8.4 Principal-Components Analysis: Perturbation Theoryp. 373
8.5 Hebbian-Based Maximum Eigenfilterp. 383
8.6 Hebbian-Based Principal-Components Analysisp. 392
8.7 Case Study: Image Codingp. 398
8.8 Kernel Principal-Components Analysisp. 401
8.9 Basic Issues Involved in the Coding of Natural Imagesp. 406
8.10 Kernel Hebbian Algorithmp. 407
8.11 Summary and Discussionp. 412
Notes and Referencesp. 415
Problemsp. 418
Chapter 9 Self-Organizing Mapsp. 425
9.1 Introductionp. 425
9.2 Two Basic Feature-Mapping Modelsp. 426
9.3 Self-Organizing Mapp. 428
9.4 Properties of the Feature Mapp. 437
9.5 Computer Experiments I: Disentangling Lattice Dynamics Using SOMp. 445
9.6 Contextual Mapsp. 447
9.7 Hierarchical Vector Quantizationp. 450
9.8 Kernel Self-Organizing Mapp. 454
9.9 Computer Experiment II: Disentangling Lattice Dynamics Using Kernel SOMp. 462
9.10 Relationship Between Kernel SOM and Kullback-Leibler Divergencep. 464
9.11 Summary and Discussionp. 466
Notes and Referencesp. 468
Problemsp. 470
Chapter 10 Information-Theoretic Learning Modelsp. 475
10.1 Introductionp. 476
10.2 Entropyp. 477
10.3 Maximum-Entropy Principlep. 481
10.4 Mutual Informationp. 484
10.5 Kullback-Leibler Divergencep. 486
10.6 Copulasp. 489
10.7 Mutual Information as an Objective Function to be Optimizedp. 493
10.8 Maximum Mutual Information Principlep. 494
10.9 Infomax and Redundancy Reductionp. 499
10.10 Spatially Coherent Featuresp. 501
10.11 Spatially Incoherent Featuresp. 504
10.12 Independent-Components Analysisp. 508
10.13 Sparse Coding of Natural Images and Comparison with ICA Codingp. 514
10.14 Natural-Gradient Learning for Independent-Components Analysisp. 516
10.15 Maximum-Likelihood Estimation for Independent-Components Analysisp. 526
10.16 Maximum-Entropy Learning for Blind Source Separationp. 529
10.17 Maximization of Negentropy for Independent-Components Analysisp. 534
10.18 Coherent Independent-Components Analysisp. 541
10.19 Rate Distortion Theory and Information Bottleneckp. 549
10.20 Optimal Manifold Representation of Datap. 553
10.21 Computer Experiment: Pattern Classificationp. 560
10.22 Summary and Discussionp. 561
Notes and Referencesp. 564
Problemsp. 572
Chapter 11 Stochastic Methods Rooted in Statistical Mechanicsp. 579
11.1 Introductionp. 580
11.2 Statistical Mechanicsp. 580
11.3 Markov Chainsp. 582
11.4 Metropolis Algorithmp. 591
11.5 Simulated Annealingp. 594
11.6 Gibbs Samplingp. 596
11.7 Boltzmann Machinep. 598
11.8 Logistic Belief Netsp. 604
11.9 Deep Belief Netsp. 606
11.10 Deterministic Annealingp. 610
11.11 Analogy of Deterministic Annealing with Expectation-Maximization Algorithmp. 616
11.12 Summary and Discussionp. 617
Notes and Referencesp. 619
Problemsp. 621
Chapter 12 Dynamic Programmingp. 627
12.1 Introductionp. 627
12.2 Markov Decision Processp. 629
12.3 Bellman's Optimality Criterionp. 631
12.4 Policy Iterationp. 635
12.5 Value Iterationp. 637
12.6 Approximate Dynamic Programming: Direct Methodsp. 642
12.7 Temporal-Difference Learningp. 643
12.8 Q-Learningp. 648
12.9 Approximate Dynamic Programming: Indirect Methodsp. 652
12.10 Least-Squares Policy Evaluationp. 655
12.11 Approximate Policy Iterationp. 660
12.12 Summary and Discussionp. 663
Notes and Referencesp. 665
Problemsp. 668
Chapter 13 Neurodynamicsp. 672
13.1 Introductionp. 672
13.2 Dynamic Systemsp. 674
13.3 Stability of Equilibrium Statesp. 678
13.4 Attractorsp. 684
13.5 Neurodynamic Modelsp. 686
13.6 Manipulation of Attractors as a Recurrent Network Paradigmp. 689
13.7 Hopfield Modelp. 690
13.8 The Cohen-Grossberg Theoremp. 703
13.9 Brain-State-In-A-Box Modelp. 705
13.10 Strange Attractors and Chaosp. 711
13.11 Dynamic Reconstruction of a Chaotic Processp. 716
13.12 Summary and Discussionp. 722
Notes and Referencesp. 724
Problemsp. 727
Chapter 14 Bayseian Filtering for State Estimation of Dynamic Systemsp. 731
14.1 Introductionp. 731
14.2 State-Space Modelsp. 732
14.3 Kalman Filtersp. 736
14.4 The Divergence-Phenomenon and Square-Root Filteringp. 744
14.5 The Extended Kalman Filterp. 750
14.6 The Bayesian Filterp. 755
14.7 Cubature Kalman Filter: Building on the Kalman Filterp. 759
14.8 Particle Filtersp. 765
14.9 Computer Experiment: Comparative Evaluation of Extended Kalman and Particle Filtersp. 775
14.10 Kalman Filtering in Modeling of Brain Functionsp. 777
14.11 Summary and Discussionp. 780
Notes and Referencesp. 782
Problemsp. 784
Chapter 15 Dynamically Driven Recurrent Networksp. 790
15.1 Introductionp. 790
15.2 Recurrent Network Architecturesp. 791
15.3 Universal Approximation Theoremp. 797
15.4 Controllability and Observabilityp. 799
15.5 Computational Power of Recurrent Networksp. 804
15.6 Learning Algorithmsp. 806
15.7 Back Propagation Through Timep. 808
15.8 Real-Time Recurrent Learningp. 812
15.9 Vanishing Gradients in Recurrent Networksp. 818
15.10 Supervised Training Framework for Recurrent Networks Using Nonlinear Sequential State Estimatorsp. 822
15.11 Computer Experiment: Dynamic Reconstruction of Mackay-Glass Attractorp. 829
15.12 Adaptivity Considerationsp. 831
15.13 Case Study: Model Reference Applied to Neurocontrolp. 833
15.14 Summary and Discussionp. 835
Notes and Referencesp. 839
Problemsp. 842
Bibliographyp. 845
Indexp. 889
Go to:Top of Page