Skip to:Content
|
Bottom
Cover image for Electrical insulation for rotating machines : design, evaluation, aging, testing, and repair
Title:
Electrical insulation for rotating machines : design, evaluation, aging, testing, and repair
Series:
IEEE Press series on power engineering
Publication Information:
Hoboken, N.J. : Wiley-Interscience, 2004
ISBN:
9780471445067
Added Author:

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010046492 TK3401 E45 2004 Open Access Book Book
Searching...
Searching...
30000010070357 TK3401 E45 2004 Open Access Book Book
Searching...

On Order

Summary

Summary

A single comprehensive resource for the design, application, testing, and maintenance of rotating machines

Filling a long-standing gap in the field, Electrical Insulation for Rotating Machines covers, in one useful volume, all aspects of the design, deterioration, testing, and repair of the electrical insulation used in motors and generators. Lucidly written by leading experts, this authoritative reference provides both historical background important to understanding machine insulation design and the most up-to-date information on new machines and how to select insulation systems for them.

Coverage includes such key topics as:

Types of rotating machines, windings, and rotor and stator winding construction Evaluating insulation materials and systems Stator winding and rotor winding insulation systems in current use Failure mechanisms and repair Testing and monitoring Maintenance strategies Detailing over 30 different rotor and stator winding failure processes and reviewing almost 25 different tests and monitors used to assess winding insulation condition, Electrical Insulation for Rotating Machines will help machine users avoid unnecessary machine failures, reduce maintenance costs, and inspire greater confidence in the design of future machines.


Author Notes

GREG C. STONE, PhD, is a dielectrics engineer who is active in writing IEEE and IEC machine insulation standards, and who worked for the Research Division of Ontario Hydro testing its hundreds of motor and generator windings. He presently works for Iris Power Engineering.

EDWARD A. BOULTER, Lt. Commander (Ret.), USN Reserves, is now a consulting engineer. Previously he spent nearly 40 years working as project/senior engineer and technical team leader designing machine insulation systems at General Electric.

IAN CULBERT was a motor designer first for Parsons Peebles and then Reliance Electric. Prior to joining Iris Power Engineering, he worked for Ontario Power Generation as a motor specialist.

HUSSEIN DHIRANI is a senior generator design engineer at Ontario Power Generation.


Table of Contents

Prefacep. xvii
1 Rotating Machine Insulation Systemsp. 1
1.1 Types of Rotating Machinesp. 1
1.1.1 AC Motorsp. 2
1.1.2 Synchronous Generatorsp. 4
1.1.3 Classification by Coolingp. 6
1.2 Purpose of Windingsp. 7
1.2.1 Stator Windingp. 7
1.2.2 Insulated Rotor Windingsp. 9
1.2.3 Squirrel Cage Induction Motor Rotor Windingsp. 9
1.3 Types of Stator Winding Constructionp. 9
1.3.1 Random-Wound Statorsp. 10
1.3.2 Form-Wound Stators--Coil Typep. 10
1.3.3 Form-Wound Stators--Roebel Bar Typep. 12
1.4 Stator Winding Insulation System Featuresp. 12
1.4.1 Strand Insulationp. 12
1.4.2 Turn Insulationp. 17
1.4.3 Groundwall Insulationp. 18
1.4.4 Groundwall partial Discharge Suppressionp. 20
1.4.5 Groundwall Stress Relief Coatingsp. 24
1.4.6 Mechanical Support in the Slotp. 27
1.4.7 Mechanical Support in the End-Windingp. 29
1.4.8 Transposition Insulationp. 31
1.5 Rotor Winding Insulation System Componentsp. 34
1.5.1 Salient Pole Rotorp. 35
1.5.2 Round Rotorsp. 36
1.5.3 Induction Motor Wound Rotorsp. 38
Referencesp. 40
2 Evaluating Insulation Materials and Systemsp. 43
2.1 Aging Stressesp. 44
2.1.1 Thermal Stressp. 45
2.1.2 Electric Stressp. 46
2.1.3 Ambient Stress (Factors)p. 47
2.1.4 Mechanical Stressp. 48
2.1.5 Multiple Stressesp. 49
2.2 Principles of Accelerated Aging Testsp. 49
2.2.1 Candidate and Reference Materials/Systemsp. 50
2.2.2 Statistical Variationp. 50
2.2.3 Failure Indicatorsp. 55
2.3 Thermal Endurance Testsp. 56
2.3.1 Basic Principlesp. 56
2.3.2 Thermal Identification and Classificationp. 57
2.3.3 Insulating Material Thermal Aging Testsp. 58
2.3.4 Insulation Systems Thermal Aging Testsp. 58
2.3.5 Future Trendsp. 60
2.4 Electrical Endurance Testsp. 60
2.4.1 Proprietary Tests for Form-Wound Coilsp. 61
2.4.2 Standardized Test Methods for Form-Wound Coilsp. 62
2.5 Thermal Cycling Testsp. 63
2.5.1 IEEE Thermal Cycling Testp. 63
2.5.2 IEC Thermal Cycling Testp. 64
2.6 Multifactor Stress Testingp. 65
2.7 Nuclear Environmental Qualification Testsp. 65
2.7.1 Environmental Qualification (EQ) by Testingp. 66
2.7.2 Environmental Qualification by Analysisp. 66
2.7.3 Environmental Qualification by a Combination of Testing and Analysisp. 67
2.8 Material Property Testsp. 67
Referencesp. 69
3 Historical Development of Insulation Materials and Systemsp. 73
3.1 Natural Materialsp. 74
3.2 Early Syntheticsp. 76
3.3 Plastic Films and Nonwovensp. 78
3.4 Liquid Synthetic Resinsp. 79
3.4.1 Polyestersp. 79
3.4.2 Epoxides (Epoxy Resins)p. 81
3.5 Micap. 83
3.5.1 Mica Splittingsp. 83
3.5.2 Mica Paperp. 84
3.6 Glass Fibersp. 86
3.7 Laminatesp. 87
3.8 Evolution of Wire and Strand Insulationp. 88
3.9 Manufacture of Random-Wound Stator Coilsp. 89
3.10 Manufacture of Form-Wound Coils and Barsp. 89
3.10.1 Early Systemsp. 89
3.10.2 Asphaltic Mica Systemsp. 90
3.10.3 Individual Coil and Bar Thermoset Systemsp. 90
3.10.4 Global VPI Systemsp. 91
3.11 Wire Transposition Insulationp. 92
3.12 Insulating Liners, Separators and Sleevingp. 93
3.12.1 Random-Wound Statorsp. 93
3.12.2 Rotorsp. 93
Referencesp. 94
4 Stator Winding Insulation Systems in Current Usep. 95
4.1 Methods of Applying Form-Wound Stator Coil Insulationp. 97
4.2 Description of Major Trademarked Form-Wound Stator Insulation Systemsp. 99
4.2.1 Westinghouse Electric Co.: Thermalasticp. 99
4.2.2 General Electric Co.: Micapals I and II Epoxy Mica Mat, Micapal HT, and Hydromatp. 100
4.2.3 Alsthom, GEC Alsthom, Alstom Power: Isotenax, Resitherm, Resiflex, Resivac and Duritenaxp. 101
4.2.4 Siemens AG, KWU: Micalasticp. 102
4.2.5 ABB Industrie AG: Micadur, Micadur Compact, Micapact, Micarexp. 102
4.2.6 Toshiba Corporation: Tosrich, Tostight Ip. 103
4.2.7 Mitsubishi Electric Corporationp. 104
4.2.8 Hitachi Ltd.: HiResin, Hi-Mold, Super Hi-Resinp. 104
4.2.9 Summary of Present-Day Insulation Systemsp. 104
4.3 Recent Developments for Form-Wound Insulation Systemsp. 105
4.4 Random-Wound Stator Insulation Systemsp. 107
4.4.1 Magnet Wire Insulationp. 107
4.4.2 Phase and Ground Insulationp. 108
4.4.3 Varnish Treatment and Impregnationp. 108
4.5 Revolutionary Stator Winding Insulation Systemsp. 108
4.5.1 Superconducting Windingsp. 108
4.5.2 PowerFormerp. 109
Referencesp. 110
5 Rotor Winding Insulation Systemsp. 113
5.1 Rotor Slot and Turn Insulationp. 114
5.2 Collector Insulationp. 115
5.3 End-Winding Insulation and Blockingp. 116
5.4 Retaining Ring Insulationp. 116
5.5 Direct-Cooled Rotor Insulationp. 117
6 Core Laminations and Their Insulationp. 119
6.1 Electromagnetic Materialsp. 119
6.1.1 Magnetic Fieldsp. 119
6.1.2 Ferromagnetismp. 119
6.1.3 Magnetization Saturation Curvep. 120
6.1.4 Ferromagnetic Materialsp. 120
6.1.5 Permeabilityp. 121
6.1.6 Hysteresis Loopp. 121
6.1.7 Eddy Current Lossp. 122
6.1.8 Other Factors Affecting Core Lossp. 122
6.1.9 Effect of Direction of the Grainp. 124
6.1.10 Effect of Temperaturep. 124
6.1.11 Effect of Heat Treatmentp. 124
6.1.12 Effect of Impurities and Alloying Elementsp. 124
6.1.13 Silicon/Aluminum Steelsp. 125
6.2 Mill-Applied Insulationp. 125
6.3 Lamination Punching and Laser Cuttingp. 125
6.4 Annealing and Burr Removalp. 126
6.5 Enameling or Film Coatingsp. 127
Referencesp. 127
7 General Principles of Winding Failure, Repair and Rewindingp. 129
7.1 Failure Processesp. 129
7.1.1 Relative Failure Rates of Componentsp. 131
7.1.2 Factors Affecting Failure Mechanism Predominancep. 132
7.2 Factors Affecting Repair Decisionsp. 133
7.3 Cutting Out Stator Coils After Failurep. 134
7.4 Rewindingp. 134
Referencesp. 135
8 Stator Failure Mechanisms and Repairp. 137
8.1 Thermal Deteriorationp. 137
8.1.1 General Processp. 137
8.1.2 Root Causesp. 139
8.1.3 Symptomsp. 140
8.1.4 Remediesp. 141
8.2 Thermal Cyclingp. 141
8.2.1 General Processp. 142
8.2.2 Root Causesp. 144
8.2.3 Symptomsp. 145
8.2.4 Remediesp. 145
8.3 Inadequate Impregnation or Dippingp. 146
8.3.1 General Processp. 146
8.3.2 Root Causesp. 146
8.3.3 Symptomsp. 148
8.3.4 Remediesp. 148
8.4 Loose Coils in the Slotp. 148
8.4.1 General Processp. 148
8.4.2 Root Causesp. 149
8.4.3 Symptomsp. 151
8.4.4 Remediesp. 152
8.5 Semiconductive Coating Failurep. 152
8.5.1 General Processp. 152
8.5.2 Root Causesp. 153
8.5.3 Symptomsp. 153
8.5.4 Remediesp. 154
8.6 Semiconductive/Grading Coating Overlap Failurep. 155
8.6.1 General Processp. 155
8.6.2 Root Causesp. 156
8.6.3 Symptomsp. 156
8.6.4 Remediesp. 156
8.7 Repetitive Voltage Surgesp. 157
8.7.1 General Processp. 158
8.7.2 Root Causep. 159
8.7.3 Symptomsp. 160
8.7.4 Remediesp. 160
8.8 Contamination (Electrical Tracking)p. 161
8.8.1 General Processp. 161
8.8.2 Root Causesp. 164
8.8.3 Symptomsp. 164
8.8.4 Remediesp. 164
8.9 Abrasive Particlesp. 165
8.9.1 General Processp. 165
8.9.2 Root Causesp. 165
8.9.3 Symptoms and Remediesp. 166
8.10 Chemical Attackp. 166
8.10.1 General Processp. 166
8.10.2 Root Causesp. 167
8.10.3 Symptomsp. 167
8.10.4 Remediesp. 167
8.11 Inadequate End-Winding Spacingp. 168
8.11.1 General Processp. 168
8.11.2 Root Causesp. 170
8.11.3 Symptomsp. 170
8.11.4 Remediesp. 171
8.12 End-Winding Vibrationp. 172
8.12.1 General Processp. 172
8.12.2 Root Causesp. 173
8.12.3 Symptomsp. 174
8.12.4 Remediesp. 174
8.13 Stator Coolant Water Leaksp. 175
8.13.1 General Processp. 175
8.13.2 Root Causesp. 176
8.13.3 Symptomsp. 177
8.13.4 Remediesp. 177
8.14 Poor Electrical Connectionsp. 177
8.14.1 General Processp. 178
8.14.2 Root Causesp. 178
8.14.3 Symptomsp. 178
8.14.4 Remediesp. 179
Referencesp. 179
9 Rotor Winding Failure Mechanisms and Repairp. 181
9.1 Round Rotor Windingsp. 181
9.1.1 Thermal Deteriorationp. 181
9.1.2 Thermal Cyclingp. 183
9.1.3 Abrasion Due To Imbalance or Turning Gear Operationp. 186
9.1.4 Pollution (Tracking)p. 187
9.1.5 Repetitive Voltage Surgesp. 188
9.1.6 Centrifugal Forcep. 189
9.1.7 Remediesp. 191
9.2 Salient Pole Rotor Windingsp. 192
9.2.1 Thermal Agingp. 192
9.2.2 Thermal Cyclingp. 193
9.2.3 Pollution (Tracking and Moisture Absorption)p. 194
9.2.4 Abrasive Particlesp. 195
9.2.5 Centrifugal Forcep. 195
9.2.6 Repetitive Voltage Surgesp. 196
9.2.7 Remediesp. 196
9.3 Wound Induction Rotor Windingsp. 198
9.3.1 Transient Overvoltagesp. 198
9.3.2 Unbalanced Stator Voltagesp. 199
9.3.3 High-Resistance Connections--Bar Lap and Wave Windingsp. 199
9.3.4 End-Winding Banding Failuresp. 200
9.3.5 Slip Ring Insulation Shorting and Groundingp. 200
9.3.6 Remediesp. 201
9.4 Squirrel Cage Induction Rotor Windingsp. 202
9.4.1 Thermalp. 202
9.4.2 Cyclic Mechanical Stressingp. 203
9.4.3 Poor Design/Manufacturep. 206
9.4.4 Repairsp. 208
Referencesp. 209
10 Core Lamination Insulation Failure and Repairp. 211
10.1 Thermal Deteriorationp. 211
10.1.1 General Processp. 212
10.1.2 Root Causesp. 212
10.1.3 Common Symptomsp. 213
10.2 Electrical Degradationp. 214
10.2.1 General Processp. 214
10.2.2 Root Causesp. 214
10.2.3 Common Symptomsp. 217
10.3 Mechanical Degradationp. 218
10.3.1 General Processp. 218
10.3.2 Root Causesp. 218
10.3.3 Symptomsp. 221
10.4 Failures Due To Manufacturing Defectsp. 221
10.4.1 General Processp. 221
10.4.2 Root Causesp. 222
10.4.3 Symptomsp. 222
10.5 Core Repairsp. 222
10.5.1 Loose Coresp. 223
10.5.2 Core Insulation Shortingp. 223
10.5.3 Core Damage Due to Winding Electrical Faultsp. 224
10.5.4 False Toothp. 225
10.5.5 Cracked Through-Bolt Insulationp. 225
Referencesp. 225
11 General Principles of Testing and Monitoringp. 227
11.1 Purpose of Testing and Monitoringp. 227
11.1.1 Assessing Winding Condition and Remaining Winding Lifep. 227
11.1.2 Prioritizing Maintenancep. 228
11.1.3 Commissioning and Warranty Testingp. 228
11.1.4 Determining Root Cause of Failurep. 228
11.2 Off-Line Testing Versus On-Line Monitoringp. 229
11.3 Role of Visual Inspectionsp. 230
11.4 Expert Systems to Convert Data into Informationp. 230
11.4.1 Off-Line Expert Systemsp. 231
11.4.2 On-Line Expert Systemsp. 231
Referencesp. 233
12 Off-Line Rotor and Stator Winding Testsp. 235
12.1 Insulation Resistance and Polarization Indexp. 235
12.1.1 Purpose and Theoryp. 238
12.1.2 Test Methodp. 240
12.1.3 Interpretationp. 241
12.2 DC Hipotp. 243
12.2.1 Purpose and Theoryp. 243
12.2.2 Test Methodp. 243
12.2.3 Interpretationp. 245
12.3 DC Conductivity Testp. 246
12.3.1 Purpose and Theoryp. 246
12.3.2 Test Methodp. 246
12.3.3 Interpretationp. 247
12.4 AC Hipot Testp. 247
12.4.1 Purpose and Theoryp. 248
12.4.2 Test Methodp. 249
12.4.3 Interpretationp. 249
12.5 Capacitance Testp. 249
12.5.1 Purpose and Theoryp. 250
12.5.2 Test Methodp. 250
12.5.3 Interpretationp. 251
12.6 Capacitance Tip-Up Testp. 252
12.6.1 Purpose and Theoryp. 252
12.6.2 Test Methodp. 253
12.6.3 Interpretationp. 253
12.7 Capacitive Impedance For Motor Statorsp. 254
12.8 Dissipation (or Power) Factor Testp. 254
12.8.1 Purpose and Theoryp. 255
12.8.2 Test Methodp. 255
12.8.3 Interpretationp. 257
12.9 Power (Dissipation) Factor Tip-Up Testp. 257
12.9.1 Purpose and Theoryp. 257
12.9.2 Test Methodp. 258
12.9.3 Interpretationp. 259
12.10 Off-Line Partial Discharge Testp. 259
12.10.1 Purpose and Theoryp. 259
12.10.2 Test Methodp. 261
12.10.3 Interpretationp. 262
12.11 Partial Discharge Probe Testsp. 263
12.11.1 Purpose and Theoryp. 263
12.11.2 Test Methodp. 264
12.11.3 Interpretationp. 264
12.12 Stator Surge Comparison Testp. 265
12.12.1 Purpose and Theoryp. 265
12.12.2 Test Methodp. 267
12.12.3 Interpretationp. 267
12.13 Inductive Impedance Testp. 268
12.14 Semiconductive Coating Contact Resistance Testp. 269
12.14.1 Purpose and Theoryp. 269
12.14.2 Test Methodp. 269
12.14.3 Interpretationp. 270
12.15 Conductor Coolant Tube Resistancep. 270
12.15.1 Purpose and Test Methodp. 270
12.16 Stator Wedge Tap Testp. 270
12.16.1 Purpose and Theoryp. 271
12.16.2 Test Methodp. 271
12.16.3 Interpretationp. 271
12.17 Slot Side Clearance Testp. 272
12.17.1 Purpose and Theoryp. 272
12.17.2 Test Methodp. 272
12.17.3 Interpretationp. 272
12.18 Stator Slot Radial Clearance Testp. 273
12.18.1 Purpose and Theoryp. 273
12.18.2 Test Methodp. 273
12.18.3 Interpretationp. 273
12.19 Stator End-Winding Resonance Testp. 273
12.19.1 Purpose and Theoryp. 274
12.19.2 Test Methodp. 274
12.19.3 Interpretationp. 274
12.20 Rotor Voltage Drop Testp. 274
12.20.1 Purpose and Theoryp. 275
12.20.2 Test Methodp. 275
12.20.3 Interpretationp. 275
12.21 Rotor RSO and Surge Testp. 275
12.21.1 Purpose and Theoryp. 275
12.21.2 Test Methodp. 276
12.21.3 Interpretationp. 276
12.22 Rotor Growler Testp. 277
12.22.1 Purpose and Theoryp. 277
12.22.2 Test Methodp. 277
12.22.3 Interpretationp. 278
12.23 Rotor Fluorescent Dye Penetrantp. 278
12.23.1 Purpose and Theoryp. 278
12.23.2 Test Method and Interpretationp. 278
12.24 Rotor Rated Flux Testp. 278
12.24.1 Purpose and Theoryp. 278
12.24.2 Test Methodp. 278
12.24.3 Interpretationp. 279
12.25 Rotor Single-Phase Rotation Testp. 279
12.25.1 Purpose and Theoryp. 279
12.25.2 Test Methodp. 279
12.25.3 Interpretationp. 279
12.26 Stator Blackout Testp. 279
12.26.1 Purpose and Theoryp. 280
12.26.2 Test Methodp. 280
12.26.3 Interpretationp. 280
12.27 Stator Pressure and Vacuum Decay Testp. 281
12.27.1 Purpose and Theoryp. 281
12.27.2 Test Methods and Interpretationp. 281
Referencesp. 282
13 In-Service Monitoring of Stator and Rotor Windingsp. 285
13.1 Thermal Monitoringp. 286
13.1.1 Stator Winding Point Sensorsp. 286
13.1.2 Rotor Winding Sensorsp. 288
13.1.3 Data Acquisition and Interpretationp. 288
13.1.4 Thermographyp. 289
13.2 Condition Monitors and Tagging Compoundsp. 290
13.2.1 Monitoring Principlesp. 291
13.2.2 Interpretationp. 292
13.3 Ozonep. 293
13.3.1 Monitoring Principlesp. 293
13.3.2 Interpretationp. 294
13.4 On-Line Partial Discharge Monitorp. 295
13.4.1 Monitoring Principlesp. 295
13.4.2 Interpretationp. 302
13.5 End-Winding Vibration Monitorp. 307
13.5.1 Monitoring Principlesp. 307
13.5.2 Data Acquisition and Interpretationp. 308
13.6 Synchronous Rotor Flux Monitorp. 308
13.6.1 Monitoring Principlesp. 308
13.6.2 Data Acquisition and Interpretationp. 310
13.7 Current Signature Analysisp. 311
13.7.1 Monitoring Principlesp. 311
13.7.2 Data Acquisitionp. 313
13.7.3 Interpretationp. 314
13.8 Air Gap Monitoring for Salient Pole Machinesp. 315
13.8.1 Monitoring Principlesp. 315
13.9 Voltage Surge Monitorp. 316
13.9.1 Monitoring Principlesp. 316
13.9.2 Interpretationp. 316
13.10 Bearing Vibration Monitorp. 317
13.10.1 Induction Motor Monitoringp. 317
13.10.2 Synchronous Machine Monitoringp. 318
Referencesp. 319
14 Core Testingp. 321
14.1 Knife Testp. 321
14.1.1 Purpose and Theoryp. 321
14.1.2 Test Methodp. 322
14.1.3 Interpretationp. 322
14.2 Rated Flux Testp. 323
14.2.1 Purpose and Theoryp. 323
14.2.2 Test Methodp. 324
14.2.3 Interpretationp. 328
14.3 Core Loss Testp. 328
14.3.1 Purpose and Theoryp. 328
14.3.2 Test Methodp. 328
14.3.3 Interpretationp. 328
14.4 Low Core Flux Test (EL-CID)p. 329
14.4.1 Purpose and Theoryp. 329
14.4.2 Test Methodp. 330
14.4.3 Interpretationp. 331
Referencesp. 332
15 Acceptance and Site Testing of New Windingsp. 333
15.1 Stator Windings Insulation System Prequalification Testsp. 333
15.1.1 Power Factor Tip-Up Testp. 333
15.1.2 Partial Discharge Testp. 334
15.1.3 Impulse (Surge) Testp. 335
15.1.4 Voltage Endurance Testp. 335
15.1.5 Thermal Cycling Testp. 337
15.1.6 Thermal Classification Testsp. 338
15.2 Stator Winding Insulation System Factory and On-Site Testsp. 339
15.2.1 Insulation Resistance and Polarization Index Testsp. 339
15.2.2 AC and DC Hipot Testsp. 340
15.2.3 Impulse (Surge) Testsp. 341
15.2.4 Strand-to-Strand Testp. 342
15.2.5 Power Factor Tip-Up Testp. 342
15.2.6 Partial Discharge Testp. 343
15.2.7 Capacitance Testp. 343
15.2.8 Semiconductive Coating Testp. 344
15.2.9 Wedge Tapp. 344
15.3 Factory and On-Site Tests for Rotor Windingsp. 345
15.3.1 Tests Applicable to All Insulated Windingsp. 345
15.3.2 Round-Rotor Synchronous Machine Windingsp. 346
15.3.3 Salient Pole Synchronous Machine Windingsp. 347
15.3.4 Wound Induction Rotor Windingsp. 347
15.3.5 Squirrel Cage Rotor Windingsp. 347
15.4 Core Insulation Factory and On-Site Testsp. 348
15.4.1 Core Tightness Testp. 348
15.4.2 Rated Flux Testp. 348
15.4.3 EL-CID Testp. 349
Referencesp. 350
16 Maintenance Strategiesp. 351
16.1 Maintenance and Inspection Optionsp. 351
16.1.1 Breakdown or Corrective Maintenancep. 352
16.1.2 Time-Based or Preventative Maintenancep. 352
16.1.3 Condition-Based or Predictive Maintenancep. 354
16.1.4 Inspectionsp. 355
16.2 Maintenance Strategies for Various Machine Types and Applicationsp. 357
16.2.1 Turbogeneratorsp. 357
16.2.2 Salient Pole Generators and Motorsp. 359
16.2.3 Squirrel Cage and Wound-Rotor Induction Motorsp. 361
Indexp. 365
About the Authorsp. 371
Go to:Top of Page