Skip to:Content
|
Bottom
Cover image for Communication systems :  analysis and design
Title:
Communication systems : analysis and design
Personal Author:
Publication Information:
Upper Saddle River, NJ Pearson / Prentice Hall, 2004
Physical Description:
1v + 1 CD-ROM
ISBN:
9780130402684
General Note:
Also available in computer disc version : CP 5069

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010059119 TK5103 S73 2004 Open Access Book Book
Searching...

On Order

Summary

Summary

Using three parallel teaching approaches--rigorous mathematical, graphical, and intuitive, this book offers various types of learners a practical and deep understanding of communication systems. Emphasis on the theme of cost vs. performance tradeoffs throughout the book provides a framework and motivation for all the topics examined in it. Fundamentals of frequency domain analysis are reinforced through graphical techniques and communications-oriented examples. Chapter topics cover digital baseband modulation techniques, baseband receiver design, digital bandpass modulation and demodulation techniques, multiplexing techniques, analog-to-digital conversion, basics of information theory and data compression, and basics of error control coding. For electrical engineers interested in the field of communication systems and digital communications.


Table of Contents

Prefacep. xiii
Acknowledgmentsp. xvii
Chapter 1 Introductionp. 1
1.1 Components of a Communication Systemp. 1
1.2 An Overview of Trade-Offs in Communication System Designp. 4
Problemsp. 5
Chapter 2 Frequency Domain Analysisp. 6
2.1 Why Study Frequency Domain Analysis?p. 6
2.2 The Fourier Seriesp. 13
2.2.1 Trigonometric Form of the Fourier Seriesp. 13
2.2.2 Other Forms of the Fourier Seriesp. 18
2.3 Representing Power in the Frequency Domainp. 38
2.3.1 The One-Sided Average Normalized Power Spectrump. 41
2.3.2 Formally Defining the Term "Bandwidth"p. 48
2.3.3 The Two-Sided Average Normalized Power Spectrump. 48
2.4 The Fourier Transformp. 52
2.5 Normalized Energy Spectral Densityp. 60
2.6 Properties of the Fourier Transformp. 65
2.7 Using the Unit Impulse Function to Represent Discrete Frequency Components as Densitiesp. 68
Problemsp. 69
Chapter 3 Digital Baseband Modulation Techniquesp. 75
3.1 Goals in Communication System Designp. 75
3.2 Baseband Modulation Using Rectangular Pulses and Binary Pulse Amplitude Modulationp. 76
3.3 Pulse Shaping to Improve Spectral Efficiencyp. 89
3.3.1 The Sinc-Shaped Pulsep. 89
3.3.2 The Raised Cosine Pulse (Damped Sinc-Shaped Pulse)p. 101
3.4 Building a Baseband Transmitterp. 111
Problemsp. 115
Chapter 4 Receiver Design (and Stochastic Mathematics, Part I)p. 123
4.1 Developing a Simple Pulse Amplitude Modulation Receiverp. 123
4.1.1 Establishing an Expression for Probability of Bit Errorp. 124
4.1.2 Stochastic Mathematics--Part I (Random Variables)p. 127
4.1.3 Examining Thermal Noisep. 132
4.1.4 The Gaussian Probability Density Functionp. 137
4.1.5 Simplifying the Expression for Probability of Bit Errorp. 144
4.2 Building the Optimal Receiver (The Matched Filter or Correlation Receiver)p. 149
4.2.1 Basic Structure for the Optimal Receiverp. 149
4.2.2 Implications of Employing Optimum Processingp. 153
4.2.3 A Graphical Interpretation of Probability of Bit Error for the Optimal Receiverp. 156
4.2.4 Designing the Correlation Receiver for More General Signalsp. 162
4.3 Synchronizationp. 172
4.3.1 Basic Structure of Continuous-Time Phase Locked Loopsp. 173
4.3.2 Analysis of the PLL with Linearized Dynamicsp. 173
4.3.3 Frequency Synthesizersp. 178
4.3.4 Timing Recoveryp. 181
4.3.5 Further Reading on Synchronizationp. 189
4.4 Equalizationp. 190
4.4.1 Intersymbol Interferencep. 192
4.4.2 Linear Transversal Equalizersp. 196
4.4.3 Least-Mean-Square Equalizersp. 198
4.4.4 Other Types of Equalizersp. 199
4.4.5 Further Reading on Equalizationp. 199
4.5 Multi-Level PAM (M-ary PAM)p. 200
Problemsp. 207
Chapter 5 Digital Bandpass Modulation and Demodulation Techniques (and Stochastic Mathematics, Part II)p. 211
5.1 Binary Amplitude Shift Keyingp. 212
5.2 Other Binary Bandpass Modulation Techniquesp. 219
5.2.1 Binary Frequency Shift Keyingp. 219
5.2.2 Binary Phase Shift Keyingp. 221
5.2.3 Calculating Average Normalized Power Spectral Density for Binary FSK and Binary PSKp. 222
5.3 Coherent Demodulation of Bandpass Signalsp. 225
5.3.1 Developing a Coherent PSK Receiverp. 227
5.3.2 Developing a Coherent ASK Receiverp. 230
5.3.3 Developing a Coherent FSK Receiverp. 232
5.3.4 Comparing Coherent PSK, FSK, and ASKp. 235
5.4 Stochastic Mathematics--Part II (Random Processes)p. 236
5.4.1 Random Processesp. 238
5.4.2 The Wiener-Khintchine Theoremp. 245
5.4.3 Ergodicityp. 252
5.5 Noncoherent Receivers for ASK and FSKp. 253
5.5.1 The Envelope Detectorp. 254
5.5.2 Noncoherent Demodulation of ASKp. 255
5.5.3 Noncoherent Demodulation of FSKp. 255
5.5.4 Performance of Noncoherent ASK and FSK Receiversp. 256
5.6 Differential (Noncoherent) PSKp. 267
5.6.1 Demodulation of Binary DPSKp. 268
5.6.2 Probability of Bit Error for a DPSK Receiverp. 270
5.7 A Comparison of Binary Bandpass Systemsp. 271
5.8 M-ary Bandpass Techniquesp. 274
5.8.1 Quaternary Phase Shift Keyingp. 274
5.8.2 Differential Quaternary Phase Shift Keyingp. 284
5.8.3 M-ary Phase Shift Keyingp. 286
5.8.4 M-ary Frequency Shift Keyingp. 292
5.8.5 Multiparameter M-ary Bandpass Signalingp. 298
Problemsp. 301
Chapter 6 Analog Modulation and Demodulationp. 306
6.1 Transmitting an Amplitude Modulated Signalp. 306
6.2 Coherent Demodulation of AM Signalsp. 309
6.3 Noncoherent Demodulation of AM Signalsp. 315
6.4 Single Sideband and Vestigial Sideband AM systemsp. 326
6.5 Frequency Modulation and Phase Modulationp. 334
6.6 Generating and Demodulating FM and PM Signalsp. 343
6.6.1 FM and PM Modulatorsp. 343
6.6.2 FM and PM Demodulatorsp. 345
6.6.3 Noise in FM and PM Systemsp. 347
6.7 A Comparison of Analog Modulation Techniquesp. 355
Problemsp. 357
Chapter 7 Multiplexing Techniquesp. 362
7.1 Time Division Multiplexingp. 364
7.2 Frequency Division Multiplexingp. 368
7.3 Code Division Multiplexing and Spread Spectramp. 370
7.3.1 Direct Sequence Spread Spectrump. 371
7.3.2 Frequency-Hopping Spread Spectrump. 381
Problemsp. 385
Chapter 8 Analog-to-Digital and Digital-to-Analog Conversionp. 388
8.1 Sampling and Quantizingp. 390
8.1.1 Sampling Baseband Analog Signalsp. 392
8.1.2 Practical Considerations in Baseband Samplingp. 397
8.1.3 Sampling Bandpass Analog Signalsp. 399
8.1.4 The Quantizing Processp. 400
8.2 Differential Pulse Coded Modulationp. 407
8.3 Delta Modulation and Continuously Variable Slope Delta Modulationp. 411
8.3.1 Delta Modulationp. 411
8.3.2 Continuously Variable Slope Delta Modulationp. 415
8.4 Further Reading on Analog-to-Digital and Digital-to-Analog Conversionp. 417
Problemsp. 417
Chapter 9 Fundamentals of Information Theory, Data Compression, and Image Compressionp. 421
9.1 Information Content, Entropy, and Information Rate of Independent Sourcesp. 421
9.2 Variable-Length, Self-Punctuating Coding for Data Compressionp. 424
9.2.1 Prefix Coding and the Tree Diagramp. 426
9.2.2 Huffman Codingp. 431
9.3 Sources with Dependent Messagesp. 439
9.3.1 Static Dictionary Encodingp. 439
9.3.2 LZW Compression--an Example of Dynamic Dictionary Encodingp. 442
9.4 Still-Image Compressionp. 444
9.4.1 Facsimilep. 444
9.4.2 Monochromatic Gray Scale Imagesp. 447
9.4.3 Color Images (the DCT and JPEG)p. 447
9.5 Moving-Image Compressionp. 450
Problemsp. 454
Chapter 10 Basics of Error Control Codingp. 458
10.1 Channel Capacityp. 460
10.2 Field Theory and Modulo-2 Operatorsp. 461
10.2.1 Galois Field of Order 2p. 461
10.2.2 Matrix Representation and Manipulationp. 463
10.3 Hamming Codesp. 464
10.4 A Geometric Interpretation of Error Control Codingp. 472
10.5 Cyclic Codesp. 481
10.5.1 Cyclic Redundancy Check Codesp. 485
10.5.2 Bose Chaudhuri Hocquenghem Codesp. 487
10.6 Hybrid FEC/ARQ Codesp. 488
10.7 Correcting Burst Errorsp. 489
10.7.1 Interleavingp. 489
10.7.2 Reed-Solomon Codesp. 490
10.8 Convolutional Codes and Viterbi Decodingp. 490
10.8.1 Convolutional Encodingp. 490
10.8.2 Creating a Trellisp. 496
10.8.3 Decoding and the Viterbi Algorithmp. 497
Problemsp. 506
Referencesp. 509
Answers to Selected Problemsp. 515
Indexp. 519
Go to:Top of Page