Skip to:Content
|
Bottom
Cover image for Dislocation based fracture mechanics
Title:
Dislocation based fracture mechanics
Personal Author:
Publication Information:
Singapore : World Scientific, 1996
ISBN:
9789810226206

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000003397282 TA409 W43 1996 Open Access Book Book
Searching...
Searching...
30000010077148 TA409 W43 1996 Unknown 1:CHECKING
Searching...
Searching...
30000010077147 TA409 W43 1996 Unknown 1:CHECKING
Searching...

On Order

Summary

Author Notes

Johannes (Hans) Weertman is Walter P Murphy Professor of Materials Science and Engineering in the Department of Materials Science and Engineering at Northwestern University


Table of Contents

Prefacep. vii
Selected Symbols Listp. xxii
Chapter 1 Griffith-Inglis Crack & Zener-Stroh-Koehler Crackp. 1
1.1 Griffith-Inglis Crackp. 2
1.2 Stress Fields of Griffith-Inglis Cracksp. 5
1.2.1 Mode I Stress Fieldp. 6
1.2.2 Mode II Stress Fieldp. 7
1.2.3 Mode III Stress Fieldp. 14
1.2.4 Mode I Near Tip Stress Fieldp. 14
1.2.5 Mode II Near Tip Stress Fieldp. 16
1.2.6 Mode III Near Tip Stress Fieldp. 16
1.3 Elastic Displacement Fields of Griffith-Inglis Cracksp. 17
1.3.1 Mode I Near Tip Elastic Displacement Fieldp. 18
1.3.2 Mode II Near Tip Elastic Displacement Fieldp. 18
1.3.3 Mode III Near Tip Elastic Displacement Fieldp. 18
1.4 Fracture Stress of Griffith-Inglis Crackp. 18
1.4.1 Energy Methodp. 19
1.4.2 Critical Crack Tip Displacement Methodp. 22
1.4.3 Dislocation Methodp. 23
1.4.4 Stress Intensity Factorp. 24
1.4.5 J Integralp. 25
1.4.6 Short Griffith-Inglis Crackp. 26
1.5 Zener-Stroh-Koehler Crackp. 27
1.6 Stress Fields of Zener-Stroh-Koehler Cracksp. 29
1.6.1 Mode I Near Tip Stress Fieldp. 30
1.6.2 Mode II Near Tip Stress Fieldp. 34
1.6.3 Mode III Near Tip Stress Fieldp. 35
1.7 Elastic Displacement Fields of Zener-Stroh-Koehler Cracksp. 35
1.7.1 Mode I Near Tip Elastic Displacement Fieldp. 36
1.7.2 Mode II Near Tip Elastic Displacement Fieldp. 36
1.7.3 Mode III Near Tip Elastic Displacement Fieldp. 36
1.8 Equilibrium Length of Zener-Stroh-Koehler Crackp. 37
1.8.1 Short Zener-Stroh-Koehler Crackp. 38
1.9 Equilibrium Length: ZSK Crack Subjected to an Applied Loadp. 38
1.10 Energy of ZSK Crack Under an Applied Loadp. 39
Chapter 1 Homeworkp. 42
Chapter 2 Dislocation Mechanicsp. 45
2.1 Dislocation Stress Fields: Rectangular Coordinatesp. 45
2.1.1 Glide Edge Dislocationp. 45
2.1.2 Climb Edge Dislocationp. 46
2.1.3 Screw Dislocationp. 47
2.1.4 Elastic Strain and Rotation Fieldsp. 48
2.2 Dislocation Stress Fields: Cylindrical Coordinatesp. 48
2.2.1 Glide Edge Dislocationp. 48
2.2.2 Climb Edge Dislocationp. 49
2.2.3 Screw Dislocationp. 49
2.3 Crack Plane Traction and Non-Traction Stressp. 49
2.3.1 Crack Plane Traction Arising from a Crack Plane Dislocation Distributionp. 49
2.3.2 Crack Plane Non-Traction Arising from a Crack Plane Dislocation Distributionp. 50
2.4 Force on a Dislocationp. 53
2.4.1 Extrinsic Resistance (Friction) Stress [tau subscript F] to Dislocation Motionp. 54
2.4.2 Intrinsic Resistance (Friction) Stress [tau subscript i] to Dislocation Motionp. 55
2.5 Dislocations and the J Integralp. 55
2.6 Dislocation Crack Extension and Deflection Forcesp. 58
2.6.1 Dislocation Crack Extension Forcep. 58
2.6.2 Dislocation Crack Deflection Forcep. 61
2.7 Dislocations Density Fields of Non-Redundant Dislocationsp. 65
2.7.1 Antiplane Strainp. 66
2.7.2 Plane Strainp. 67
2.7.3 Dislocation Density from Plastic Strainp. 70
2.7.3.1 Antiplane Strainp. 70
2.7.3.2 Antiplane Strain, Curvilinear Coordinatesp. 71
2.7.3.3 Plane Strainp. 74
2.7.3.4 Plane Strain, Curvilinear Coordinatesp. 78
2.7.3.5 Incremental Formp. 80
2.7.3.6 Strain Gradient Form Dislocation Density Field in Plane Strainp. 81
2.8 Electrical Analogyp. 81
2.8.1 Dislocation Analogue of Point Electrical Chargep. 84
2.9 Dislocations, the Source of Internal Stressesp. 86
2.9.1 General Dislocation Density Fieldp. 87
2.9.2 Lattice Curvaturep. 89
2.10 Edge Dislocation Stress-Strain-Rotation Field in Plane Stressp. 89
2.10.1 Glide Edge Dislocationp. 90
2.10.2 Climb Edge Dislocationp. 90
2.10.3 Mode I Crack and Mode II Crack in an Elastic Foilp. 91
2.10.4 Dislocation Crack Extension Force & Fracture Stress in Plane Stressp. 92
2.10.5 Screw Dislocationp. 92
2.11 Dislocations Near and on an Interfacep. 93
2.11.1 Screw Dislocationp. 93
2.11.2 Glide Edge Dislocationp. 93
2.11.3 Climb Edge Dislocationp. 94
2.11.4 Comninou-Dundurs Equationp. 94
Chapter 2 Appendix: Non-Traction Stress Jump Without(?) a Planar Dislocation Distributionp. 96
Test of the Rulep. 99
Chapter 2 Homeworkp. 99
Chapter 3 Hilbert Transforms & Muskhelishvili Equationsp. 103
3.1 Hilbert Transformsp. 103
3.2 Muskhelishvili Equationsp. 106
3.2.1 Determination of Muskhelishvili Equations for a Single Zonep. 107
3.3 Determination of the Distance c to the Outer Crack Boundaryp. 110
3.4 Summary of Equations for a Single Dislocation Zonep. 113
3.5 Solution When the Stress is Infinite at the Crack Tipsp. 114
3.6 Non-Centered Coordinate Systemp. 116
3.7 Multiple Dislocation Zonesp. 117
3.7.1 Double Zonep. 117
3.7.2 Infinite Crack Tip Stress for Symmetric Double Zonep. 121
3.7.3 Symmetric Triple Zonep. 122
3.8 Plane Stressp. 123
3.9 Resolution of a Hilbert Transform Paradox with Ghost Dislocation Distributionsp. 123
Table 3.1p. 127
Chapter 3 Homeworkp. 131
Chapter 4 Bilby-Cottrell-Swinden-Dugdale (BCSD) Crackp. 133
4.1 Bilby-Cottrell-Swinden-Dugdale (BCSD)p. 133
4.1.1 Griffith-Inglis Crack Limitp. 137
4.1.2 Crack Extension force of BCSD Crackp. 137
4.1.3 Crack Tip Shielding of BCSD Crackp. 138
4.1.4 Mixed Mode I & II BCSD Crackp. 138
4.1.4.1 Crack Extension Forcep. 138
4.1.4.2 Crack Deflection Forcep. 138
4.2 BCSD Type Zener-Stroh-Koehler Crackp. 139
4.2.1 Classical Limit of Zener Stroh-Koehler Crackp. 141
4.2.2 Stressed Zener-Stroh-Koehler Crackp. 142
4.3 Stress Fields of BCSD Cracksp. 143
4.3.1 Mode III BCSD Crackp. 144
4.3.2 Mode II BCSD Crackp. 146
4.3.3 Mode I BCSD Crackp. 147
4.4 Asymmetric Crack Solutionsp. 147
4.5 Double Slip Plane Crack Modelp. 150
4.5.1 Stationary Crackp. 151
4.5.2 Crack Tip Stress Intensity Factorp. 154
4.5.2.1 Short Short-Crackp. 156
4.5.2.2 Dislocation Crack Tip Shielding and Antishieldingp. 157
4.5.3 Growing Crackp. 158
4.5.3.1 R-Curvep. 159
Chapter 4 Homeworkp. 160
Chapter 5 Crack Tip Shielding and Antishielding by Dislocationsp. 163
5.1 Dislocation Crack Tip Shielding and Antishieldingp. 165
5.1.1 Screw Dislocationsp. 166
5.1.2 Glide Edge Dislocationsp. 167
5.1.3 Climb Edge Dislocationsp. 167
5.1.4 Stress Intensity Factor L for an Individual Dislocationp. 168
5.1.5 Near Tipp. 168
5.1.5.1 Screw Dislocationp. 168
5.1.5.2 Glide Edge Dislocationp. 168
5.1.5.3 Climb Edge Dislocationp. 168
5.1.6 Far Crackp. 169
5.1.6.1 Screw Dislocationp. 169
5.1.6.2 Glide Edge Dislocationp. 169
5.1.6.3 Climb Edge Dislocationp. 169
5.1.7 Near Tip Radial Edge Dislocationp. 170
5.1.8 Near Tip Azimuthal Edge Dislocationp. 170
5.1.9 Comparison of L with Stress Fields of Griffith-Inglis and Zener-Stroh-Koehler Cracksp. 173
5.1.10 Placing a Discrete Dislocation within the Crackp. 174
5.2 Induced Crack Plane Dislocation Distribution B(x)p. 174
5.2.1 Screw Dislocation Inducedp. 174
5.2.2 Glide Edge Dislocation Inducedp. 176
5.2.3 Climb Edge Dislocation Inducedp. 177
5.2.4 Near Tipp. 177
5.2.4.1 Screw Dislocation Inducedp. 177
5.2.4.2 Glide Edge Dislocation Inducedp. 178
5.2.4.3 Climb Edge Dislocation Inducedp. 178
5.2.5 Near Tip Radial Edge Dislocation Inducedp. 178
5.2.6 Near Tip Azimuthal Edge Dislocation Inducedp. 179
5.3 Stress on Crack Plane Ahead of Crack Tipp. 179
5.3.1 Screw Dislocationp. 180
5.3.2 Glide Edge Dislocationp. 180
5.3.3 Climb Edge Dislocationp. 180
5.3.4 Near Tipp. 181
5.3.5 Near Tip Crack Plane Dislocation arising from Near Tip Dislocationp. 182
5.4 Impurity Atom Crack Tip Shielding and Antishieldingp. 184
5.4.1 Near Tipp. 185
5.4.2 Far Crackp. 186
5.5 Microcrack Shielding and Antishieldingp. 187
5.5.1 Dislocation Dipolesp. 189
5.5.1.1 Horizontal Glide Edge Dislocation Dipolep. 189
5.5.1.2 Vertical Glide Edge Dislocation Dipolep. 190
5.5.1.3 Horizontal Climb Edge Dislocation Dipolep. 190
5.5.1.4 Vertical Climb Edge Dislocation Dipolep. 191
5.5.1.5 Horizontal Screw Dislocation Dipolep. 191
5.5.1.6 Vertical Screw Dislocation Dipolep. 191
5.5.2 Near Tip Stress Intensity Factorsp. 191
5.5.2.1 Horizontal Glide Edge Dislocation Dipolep. 192
5.5.2.2 Vertical Glide Edge Dislocation Dipolep. 192
5.5.2.3 Horizontal Climb Edge Dislocation Dipolep. 192
5.5.2.4 Vertical Climb Edge Dislocation Dipolep. 192
5.5.2.5 Horizontal Screw Dislocation Dipolep. 192
5.5.2.6 Vertical Screw Dislocation Dipolep. 193
5.6 Crack Tip Blunting by Dislocation Emissionp. 193
5.6.1 Rice-Thomson Modelp. 193
5.6.2 Model Based on Muskhelishvili Type Analysisp. 195
5.6.3 Crack Tip Bluntingp. 198
Chapter 5 Homeworkp. 199
Chapter 6 Mode III Crack in an Elastic-Plastic Solidp. 201
6.1 Mode III Crack in an Elastic Perfectly Plastic Solidp. 201
6.1.1 Stress Fieldp. 202
6.1.2 Strain Fieldp. 206
6.1.3 Dislocation Crack Extension Force and the Plastic Zone Sizep. 207
6.1.4 Crack Tip Shieldingp. 207
6.1.5 Crack Plane Dislocation Distributionp. 208
6.1.6 Elastic Region Stress Fieldp. 208
6.1.7 Boundary Conditions Summaryp. 210
6.2 Stationary Crack in a Work Hardening Solid in Small Scale Yieldingp. 211
6.2.1 Stress Solutionp. 212
6.2.2 Strain Solutionp. 214
6.2.3 Dislocation Density Fieldp. 214
6.2.4 Slip Trajectoriesp. 214
6.2.5 Plastic Strain from Dislocation Density Fieldp. 217
6.2.6 Dislocation Crack Tip Shieldingp. 220
6.2.7 Dislocation Crack Extension Forcep. 220
6.2.8 Crack Plane Dislocation Density Distributionp. 221
6.2.9 Net Burgers Vector of Plastic Zone Dislocationsp. 222
6.3 Mode III Crack in a Linear Work Hardening Solid with Zero Yield Stressp. 222
6.3.1 Stress Solutionp. 223
6.3.2 Maximum Shear Stress Plane Trajectoriesp. 224
6.3.3 Dislocation Densityp. 225
6.4 Mode III Crack in an Elastic Perfectly Plastic Solid in Large Scale Yieldingp. 226
6.4.1 Approximate Solutionp. 227
6.4.2 Special Problemp. 228
6.4.3 Exact Solutionp. 230
6.4.3.1 'Pressurized' Mode III Crackp. 235
6.5 Growing Mode III Crack in an Elastic Perfectly Plastic Solidp. 236
6.5.1 Chitaley-McClintock Asymptotic Regionp. 238
6.5.2 Strain Field in CM Sectorp. 239
6.5.3 Strain Field in DH Sectorp. 242
6.5.4 Approximate Solutionp. 243
Chapter 6 Appendix: Iterative Solution of Special Problemp. 249
Chapter 6 Homeworkp. 256
Chapter 7 Mode II Crack in an Elastic-Plastic Solidp. 259
7.1 Mode II Crack in an Elastic Perfectly Plastic Solid in Small Scale Yieldingp. 259
7.1.1 Plastic Zone Stress Fieldp. 260
7.1.2 Asymptotic Dislocation Density Fieldp. 262
7.1.2.1 Asymptotic Dislocation Density Field from Stress Fieldp. 265
7.1.2.2 Asymptotic Dislocation Density Field from Strain Fieldp. 265
7.1.3 Plastic Zone Strain-Rotation Field and Dislocation Density Fieldp. 266
7.1.4 Plastic Zone Shapep. 268
7.1.4.1 Dislocation Crack Extension Force and the Plastic Zone Sizep. 270
7.1.4.2 Dislocation Crack Tip Shieldingp. 270
7.1.5 Crack Plane Dislocation Distributionp. 273
7.1.6 Elastic Region Stress Fieldp. 275
7.1.6.1 Constant Stress Magnitude Contoursp. 279
7.2 Mode II Crack in a Linear Work Hardening Solid with Zero Yield Stressp. 282
7.2.1 Stress Solutionp. 283
7.2.2 Maximum Shear Stress Plane Trajectoriesp. 284
7.2.3 Rotationp. 285
7.2.3.1 A Physical Inconsistencyp. 285
7.2.4 Solution without Reversed Slipp. 286
7.2.4.1 Dislocation Density Fieldp. 286
Chapter 7 Homeworkp. 289
Chapter 8 Mode I Crack in an Elastic-Plastic Solidp. 291
8.1 Mode I Crack in an Elastic Perfectly Plastic Solid in Small Scale Yieldingp. 291
8.1.1 Mode II Analogue Plastic Zone Stress Fieldp. 292
8.1.2 Asymptotic Dislocation Density Fieldp. 293
8.1.3 Plastic Zone Stress Field: Mode I Crack in an Elastic Perfectly Plastic Solid Dislocation Density Fieldp. 299
8.2 Dislocation Density Fieldp. 304
8.2.1 Strain-Rotation Fieldp. 306
8.2.1.1 Stream Functions and Displacement Fieldsp. 306
8.2.1.2 Strain-Rotation Fieldp. 307
8.2.2 Dislocation Density Fieldp. 308
8.3 Dislocation Crack Extension Forcep. 309
8.3.1 Transformed Dislocation Density Componentsp. 310
8.3.2 Transformed Stress Componentsp. 310
8.4 Dislocation Crack Tip Shieldingp. 310
8.4.1 Trajectory Equationsp. 311
8.5 Crack Plane Dislocation Distributionp. 316
8.6 Elastic Region Stress Fieldp. 316
8.6.1 Constant Stress Magnitude Contoursp. 319
8.7 Mode I Crack in a Linear Work Hardening Solid with Zero Yield Stressp. 322
8.7.1 Stress Solutionp. 322
8.7.2 Maximum Shear Stress Plane Trajectoriesp. 323
8.7.3 Rotationp. 324
8.7.3.1 A Physical Inconsistencyp. 324
8.7.4 Solution without Reversed Slipp. 325
8.7.4.1 Dislocation Density Fieldp. 325
8.7.5 Dislocation Density Field Found from Plastic Strain Fieldp. 327
8.8 Hutchinson-Rice-Rosengren (HRR) Stress-Strain Fieldp. 329
8.8.1 Boundary and Symmetry Conditionsp. 330
8.8.2 HRR Stress Fieldp. 332
8.8.3 HRR Strain Fieldp. 333
8.8.4 HRR Strain-Strain Field for a Special Casep. 334
8.8.5 Dislocation Density Field of the HRR Stress-Strain-Rotation Fieldp. 337
8.8.6 Dislocation Density Conditionp. 338
8.8.7 Exponent Conditionp. 339
8.9 Mixed Mode I & II Stationary Crack in an Elastic Perfectly Plastic Solidp. 342
8.9.1 Shih Asymptotic Stress Fieldp. 342
8.9.2 Asymptotic Stress Field with Sector Below Yield Stressp. 344
Chapter 8 Homeworkp. 348
Chapter 9 Moving Yoffe Crackp. 351
9.1 Dislocation Stress Fieldsp. 351
9.1.1 Uniformly Moving Screw Dislocation Stress Fieldp. 352
9.1.2 Uniformly Moving Glide Edge Dislocation Stress Fieldp. 352
9.1.3 Uniformly Moving Climb Edge Dislocation Stress Fieldp. 353
9.1.4 Dislocation and Crack Plane Traction Stressesp. 354
9.2 Stress Fields of Moving Yoffe Cracksp. 356
9.2.1 Mode I Crackp. 357
9.2.2 Mode II Crackp. 357
9.2.3 Mode III Crackp. 358
9.2.4 Mode I Near Tip Stress Fieldp. 358
9.2.5 Mode II Near Tip Stress Fieldp. 359
9.2.6 Mode III Near Tip Stress Fieldp. 359
9.2.7 Plane of Maximum Tensile Stress at Mode I Crack Tipp. 360
9.2.7.1 Yoffe Crack Branchingp. 361
9.2.8 Plane of Maximum Tensile and Shear Stress at Mode II Crack Tipp. 365
9.2.9 Plane of Maximum Shear Stress at Mode III Crack Tipp. 370
9.3 Dislocation Density Field Equationsp. 370
9.3.1 Antiplane Strainp. 371
9.3.2 Plane Strainp. 372
Chapter 9 Homeworkp. 372
Chapter 10 Interesting Applicationsp. 373
10.1 Crevasses and Dikesp. 373
10.1.1 Crevassesp. 373
10.1.2 Propagation of Magma Filled Cracksp. 379
10.1.3 Dikesp. 380
10.2 Unstable Slippagep. 382
10.3 Edge Cracks in Elastic Solidsp. 385
10.4 Interface Cracksp. 391
10.5 Fatigue Crack Propagationp. 398
10.5.1 Fatigue Crack Growth Controlled by Crack Tip Bluntingp. 398
10.5.2 Paris Lawp. 399
10.6 Redundant and Non-Redundant Dislocationsp. 402
10.6.1 Irwin-Orowan Fracture Equationp. 405
Chapter 10 Appendix: Stress Field of a Mode I and of a Mode II Interface Crackp. 407
Chapter 10 Homeworkp. 413
Appendix A Short Table of Hilbert Transformsp. 417
Appendix B Table of Useful Integrals for Crack Problemsp. 420
Appendix C Stress Fields of Dislocations Near or On an Interfacep. 439
C.1 Screw Dislocationp. 439
C.1.1 Discrete Image Screw Dislocationsp. 439
C.1.2 Image Screw Interface Dislocation Distributionsp. 441
C.2 Glide Edge Dislocationp. 442
C.2.1 Continuity Conditionsp. 443
C.2.2 Real Dislocation and Set I of Image Dislocationsp. 443
C.2.3 Set II of Image Dislocationsp. 445
C.2.4 Shear Stress Continuityp. 446
C.2.5 Normal Stress Continuityp. 447
C.2.6 Normal Displacement Continuityp. 448
C.2.7 Tangential Displacement Continuityp. 449
C.2.8 Constantsp. 450
C.3 Climb Edge Dislocationp. 451
C.4 Dislocation at the Interfacep. 451
C.4.1 Screw Dislocationp. 451
C.4.2 Glide Edge Dislocationp. 451
C.4.3 Climb Edge Dislocationp. 453
C.5 Comninou-Dundurs Equationsp. 453
C.6 Inverse Comninou-Dundurs Equationsp. 454
Appendix D Table of Useful Equationsp. 455
D.1 Stress and Strain Componentsp. 455
D.1.1 Cartesian Coordinatesp. 456
D.1.2 Cylindrical Coordinatesp. 456
D.1.3 Finger and Thumb Coordinatesp. 456
D.1.4 Strain Compatibility Condition for Plane Strainp. 457
D.2 Elastic Constantsp. 458
D.3 Stress and Strain Components in Rotated Coordinate Systemp. 458
D.4 Conditions for Antiplane Strain, Plane Strain and Plane Stressp. 460
D.5 Equations for Dynamics Equilibriump. 461
D.6 Non-Redundant Dislocation Density Fieldp. 462
D.6.1 Cartesian Coordinatesp. 462
D.6.1.1 Frank's Rulep. 463
D.6.2 Cylindrical Coordinatesp. 463
D.6.2.1 Frank's Rulep. 464
D.6.3 Spherical Coordinatesp. 464
D.6.3.1 Frank's Rulep. 465
D.6.4 Dislocation Density Relationships and Strain Compatibility Equationsp. 465
D.6.4.1 Beltrami-Michell (Strain) Compatibility Equationsp. 465
D.7 Stress-Strain-Rotation Displacement Fields in Plane Strain from Stress and Strain Functionsp. 466
D.7.1 Airy Stress Functionp. 466
D.7.2 Displacement and Rotation Fieldp. 466
D.7.3 Stream Functionp. 466
D.7.4 Antiplane Strain Stress Functionp. 467
D.8 The Del Divergence, Curl and Gradient Operatorsp. 467
D.8.1 Cartesianp. 467
D.8.2 Cylindricalp. 467
D.8.3 Sphericalp. 467
D.8.4 Cylindrical, Shifting Centerp. 468
D.9 Equations of Static Equilibrium in Shifting Center Cylindrical Coordinate Systemp. 468
D.9.1 Antiplane Strainp. 468
D.9.2 Plane Strainp. 468
D.10 Trigonometric Relationshipsp. 469
D.11 Dirac Delta Functionsp. 470
D.11.1 One Dimensionp. 470
D.11.2 Two Dimensionsp. 470
D.11.3 Three Dimensionsp. 470
D.11.4 One Dimension, Special Examplep. 471
D.12 Curvesp. 472
D.13 Surface Dislocation Density Tensorp. 472
D.14 Single Stress Component - Dislocation Density Relationshipsp. 474
D.14.1 Plane Strainp. 474
D.14.2 Antiplane Strainp. 474
Appendix E Derivation of the Del Gradient and other Operators for the Shifting Center Cylindrical Coordinate Systemp. 475
Appendix F Orthogonal Curvilinear Coordinatesp. 481
F.1 Curvilinear Coordinatesp. 481
F.1.1 Exponential Spiralsp. 482
F.1.2 Non-exponential Spiralp. 484
F.2 Static Equilibrium Equationsp. 487
F.2.1 Plane Strainp. 487
F.2.2 Antiplane Strainp. 493
F.3 Gradient [down triangle, open subscript grad], Divergence [down triangle, open subscript div] and Curl [down triangle, open subscript curl] Operatorsp. 493
Appendix G Dislocations in Stress Spacep. 495
G.1 Cracks in Elastic Stress Spacep. 498
G.1.1 Zener-Stroh-Koehler Crackp. 498
G.1.2 Griffith-Inglis Crackp. 501
G.2 Plane Strain Stress Spacep. 503
Referencesp. 505
Dislocation Textsp. 505
Fracture Textsp. 505
Other Textsp. 507
Review Papersp. 508
Research Papersp. 510
Indexp. 519
Go to:Top of Page