Skip to:Content
|
Bottom
Cover image for Mechanical Properties of Engineered Materials
Title:
Mechanical Properties of Engineered Materials
Personal Author:
Physical Description:
xiii, 583 pages : illustrations ; 23 cm.
ISBN:
9780824789008

9780367446932
General Note:
First issued in paperback 2019
Abstract:
Featuring in-depth discussions on tensile and compressive properties, shear properties, strength, hardness, environmental effects, and creep crack growth, "Mechanical Properties of Engineered Materials" considers computation of principal stresses and strains, mechanical testing, plasticity in ceramics, metals, intermetallics, and polymers, materials selection for thermal shock resistance, the analysis of failure mechanisms such as fatigue, fracture, and creep, and fatigue life prediction. It is a top-shelf reference for professionals and students in materials, chemical, mechanical, corrosion, industrial, civil, and maintenance engineering; and surface chemistry

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010372192 TA404.8 S63 2003 Open Access Book Book
Searching...
Searching...
30000010077065 TA404.8 S63 2003 Unknown 1:CHECKING
Searching...

On Order

Summary

Summary

Featuring in-depth discussions on tensile and compressive properties, shear properties, strength, hardness, environmental effects, and creep crack growth, "Mechanical Properties of Engineered Materials" considers computation of principal stresses and strains, mechanical testing, plasticity in ceramics, metals, intermetallics, and polymers, materials selection for thermal shock resistance, the analysis of failure mechanisms such as fatigue, fracture, and creep, and fatigue life prediction. It is a top-shelf reference for professionals and students in materials, chemical, mechanical, corrosion, industrial, civil, and maintenance engineering; and surface chemistry.


Author Notes

Wole Soboyejo is a Professor in the Department of Mechanical and Aerospace Engineering and the Princeton Materials Institute at Princeton University, New Jersey


Table of Contents

Prefacep. iii
1 Overview of Crystal/Defect Structure and Mechanical Properties and Behaviorp. 10
1.1 Introductionp. 1
1.2 Atomic Structurep. 1
1.3 Chemical Bondsp. 2
1.4 Structure of Solidsp. 8
1.5 Structural Length Scales: Nanostructure, Microstructure, and Macrostructurep. 19
1.6 Summaryp. 20
Bibliographyp. 21
2 Defect Structure and Mechanical Propertiesp. 23
2.1 Introductionp. 23
2.2 Indicial Notation for Atomic Planes and Directionsp. 23
2.3 Defectsp. 28
2.4 Thermal Vibrations and Microstructural Evolutionp. 33
2.5 Overview of Mechanical Behaviorp. 51
2.6 Summaryp. 57
Bibliographyp. 57
3 Basic Definitions of Stress and Strainp. 59
3.1 Introductionp. 59
3.2 Basic Definitions of Stressp. 59
3.3 Basic Definitions of Strainp. 64
3.4 Mohr's Circle of Stress and Strainp. 70
3.5 Computation of Principal Stresses and Principal Strainsp. 72
3.6 Hydrostatic and Deviatoric Stress Componentsp. 75
3.7 Strain Measurementp. 78
3.8 Mechanical Testingp. 81
3.9 Summaryp. 84
Bibliographyp. 84
4 Introduction to Elastic Behaviorp. 85
4.1 Introductionp. 85
4.2 Reasons for Elastic Behaviorp. 86
4.3 Introduction to Linear Elasticityp. 89
4.4 Theory of Elasticityp. 93
4.5 Introduction to Tensor Notationp. 103
4.6 Generalized Form of Linear Elasticityp. 107
4.7 Strain Energy Density Functionp. 109
4.8 Summaryp. 110
Bibliographyp. 111
5 Introduction to Plasticityp. 112
5.1 Introductionp. 112
5.2 Physical Basis for Plasticityp. 113
5.3 Elastic-Plastic Behaviorp. 121
5.4 Empirical Stress-Strain Relationshipsp. 128
5.5 Considere Criterionp. 131
5.6 Yielding Under Multiaxial Loadingp. 133
5.7 Introduction to J[subscript 2] Deformation Theoryp. 136
5.8 Flow and Evolutionary Equations (Constitutive Equations of Plasticity)p. 138
5.9 Summaryp. 139
Bibliographyp. 139
6 Introduction to Dislocation Mechanicsp. 141
6.1 Introductionp. 141
6.2 Theoretical Shear Strength of a Crystalline Solidp. 142
6.3 Types of Dislocationsp. 144
6.4 Movement of Dislocationsp. 148
6.5 Experimental Observations of Dislocationsp. 156
6.6 Stress Fields Around Dislocationsp. 157
6.7 Strain Energiesp. 163
6.8 Forces on Dislocationsp. 165
6.9 Forces Between Dislocationsp. 169
6.10 Forces Between Dislocations and Free Surfacesp. 173
6.11 Summaryp. 175
Bibliographyp. 175
7 Dislocations and Plastic Deformationp. 177
7.1 Introductionp. 177
7.2 Dislocation Motion in Crystalsp. 178
7.3 Dislocation Velocityp. 181
7.4 Dislocation Interactionsp. 183
7.5 Dislocation Bowing Due to Line Tensionp. 187
7.6 Dislocation Multiplicationp. 188
7.7 Contributions from Dislocation Density to Macroscopic Strainp. 191
7.8 Crystal Structure and Dislocation Motionp. 193
7.9 Critical Resolved Shear Stress and Slip in Single Crystalsp. 202
7.10 Slip in Polycrystalsp. 206
7.11 Geometrically Necessary and Statistically Stored Dislocationsp. 209
7.12 Dislocation Pile-Ups and Bauschinger Effectp. 216
7.13 Mechanical Instabilities and Anomalous/Serrated Yieldingp. 218
7.14 Summaryp. 221
Bibliographyp. 221
8 Dislocation Strengthening Mechanismsp. 224
8.1 Introductionp. 224
8.2 Dislocation Interactions with Obstaclesp. 225
8.3 Solid Solution Strengtheningp. 226
8.4 Dislocation Strengtheningp. 229
8.5 Grain Boundary Strengtheningp. 231
8.6 Precipitation Strengtheningp. 234
8.7 Dispersion Strengtheningp. 244
8.8 Overall Superpositionp. 245
8.9 Summaryp. 246
Bibliographyp. 246
9 Introduction to Compositesp. 248
9.1 Introductionp. 248
9.2 Types of Composite Materialsp. 249
9.3 Rule-of-Mixture Theoryp. 257
9.4 Deformation Behavior of Unidirectional Compositesp. 262
9.5 Matrix versus Composite Failure Modes in Unidirectional Compositesp. 265
9.6 Failure of Off-Axis Compositesp. 267
9.7 Effects of Whisker/Fiber Length on Composite Strength and Modulusp. 271
9.8 Constituent and Composite Propertiesp. 275
9.9 Statistical Variations in Composite Strengthp. 282
9.10 Summaryp. 287
Bibliographyp. 287
10 Further Topics in Compositesp. 289
10.1 Introductionp. 289
10.2 Unidirectional Laminatesp. 290
10.3 Off-Axis Laminatesp. 292
10.4 Multiply Laminatesp. 295
10.5 Composite Ply Designp. 300
10.6 Composite Failure Criteriap. 302
10.7 Shear Lag Theoryp. 304
10.8 The Role of Interfacesp. 308
10.9 Summaryp. 313
Bibliographyp. 313
11 Fundamentals of Fracture Mechanicsp. 315
11.1 Introductionp. 315
11.2 Fundamentals of Fracture Mechanicsp. 317
11.3 Notch Concentration Factorsp. 317
11.4 Griffith Fracture Analysisp. 318
11.5 Energy Release Rate and Compliancep. 320
11.6 Linear Elastic Fracture Mechanicsp. 324
11.7 Elastic-Plastic Fracture Mechanicsp. 342
11.8 Fracture Initiation and Resistancep. 351
11.9 Interfacial Fracture Mechanicsp. 355
11.10 Dynamic Fracture Mechanicsp. 359
11.11 Summaryp. 361
Bibliographyp. 361
12 Mechanisms of Fracturep. 366
12.1 Introductionp. 366
12.2 Fractographic Analysisp. 367
12.3 Toughness and Fracture Process Zonesp. 369
12.4 Mechanisms of Fracture in Metals and Their Alloysp. 371
12.5 Fracture of Intermetallicsp. 385
12.6 Fracture of Ceramicsp. 387
12.7 Fracture of Polymersp. 389
12.8 Fracture of Compositesp. 393
12.9 Quantitative Fractographyp. 396
12.10 Thermal Shock Responsep. 397
12.11 Summaryp. 410
Bibliographyp. 411
13 Toughening Mechanismsp. 414
13.1 Introductionp. 414
13.2 Toughening and Tensile Strengthp. 416
13.3 Review of Composite Materialsp. 418
13.4 Transformation Tougheningp. 419
13.5 Crack Bridgingp. 426
13.6 Crack-Tip Bluntingp. 436
13.7 Crack Deflectionp. 440
13.8 Twin Tougheningp. 442
13.9 Crack Trappingp. 443
13.10 Microcrack Shielding/Antishieldingp. 445
13.11 Linear Superposition Conceptp. 445
13.12 Synergistic Toughening Conceptp. 446
13.13 Toughening of Polymersp. 449
13.14 Summary and Concluding Remarksp. 451
Bibliographyp. 452
14 Fatigue of Materialsp. 456
14.1 Introductionp. 456
14.2 Micromechanisms of Fatigue Crack Initiationp. 460
14.3 Micromechanisms of Fatigue Crack Propagationp. 462
14.4 Conventional Approach to Fatiguep. 467
14.5 Differential Approach to Fatiguep. 473
14.6 Fatigue Crack Growth in Ductile Solidsp. 474
14.7 Fatigue of Polymersp. 477
14.8 Fatigue of Brittle Solidsp. 480
14.9 Crack Closurep. 486
14.10 Short Crack Problemp. 493
14.11 Fatigue Growth Laws and Fatigue Life Predictionp. 496
14.12 Fatigue of Compositesp. 499
14.13 Summaryp. 504
Bibliographyp. 505
15 Introduction to Viscoelasticity, Creep, and Creep Crack Growthp. 511
15.1 Introductionp. 511
15.2 Creep and Viscoelasticity in Polymersp. 513
15.3 Mechanical Dumpingp. 520
15.4 Temperature Dependence of Time-Dependent Flow in Polymersp. 523
15.5 Introduction to Creep in Metallic and Ceramic Materialsp. 525
15.6 Functional Forms in the Different Creep Regimesp. 528
15.7 Secondary Creep Deformation and Diffusionp. 531
15.8 Mechanisms of Creep Deformationp. 533
15.9 Creep Life Predictionp. 542
15.10 Creep Design Approachesp. 544
15.11 Threshold Stress Effectsp. 546
15.12 Creep in Composite Materialsp. 547
15.13 Thermostructural Materialsp. 548
15.14 Introduction to Superplasticityp. 556
15.15 Introduction to Creep Damage and Time-Dependent Fracture Mechanicsp. 562
15.16 Summaryp. 567
Bibliographyp. 568
Indexp. 573
Go to:Top of Page