Skip to:Content
|
Bottom
Cover image for Nanotechnology : environmental implications and solutions
Title:
Nanotechnology : environmental implications and solutions
Personal Author:
Publication Information:
Hoboken, NJ : Wiley-Interscience, 2005
ISBN:
9780471699767
Subject Term:
Added Author:

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000004861690 T174.7 T43 2005 Open Access Book Book
Searching...

On Order

Summary

Summary

An authoritative, in-depth exploration of the environmental consequences of nanotechnology

Nanotechnology is revolutionizing the chemical, telecom, biotech, pharmaceutical, health care, aerospace, and computer industries, among others, and many exciting new nanotech applications are envisioned for the near future. While the rapid pace of innovation has been truly inspiring, much remains to be learned about the potential environmental and health risks posed by this nascent technology and its byproducts. So important is this issue that the ultimate success or failure of nanotechnology may well depend on how effectively science and industry address these concerns in the years ahead.

Written by two highly accomplished environmental professionals, Nanotechnology: Environmental Implications and Solutions brings scientists, engineers, and policymakers up to speed on the current state of knowledge in this vitally important area. Professor Theodore and Dr. Kunz provide a concise review of nano-fundamentals and explore background issues surrounding nanotechnology and its environmental impact. They then follow up with in-depth discussions of:
* The control, monitoring, and reduction of nanotech byproducts and their impact on the air, water, and land
* Health risks associated with nanotechnology, and methods to assess and control them
* Nanotech hazard risk assessment-including emergency response planning and personnel training
* Multimedia approaches that are available for the analysis of the impact of nanotechnology in the chemical, manufacturing, and waste disposal industries
* The future of nanotechnology and the "Industrial Revolution II"
* The legal implications of nanotechnology
* Societal and ethical implications of nanotechnology-based materials and processing method

Assuming only a basic knowledge of physics, chemistry, and mathematics on behalf of its readers, Nanotechnology: Environmental Implications and Solutions makes fascinating and useful reading for engineers, scientists, administrators, environmental regulatory officials, and public policy makers, as well as students in a range of science and engineering disciplines.


Author Notes

LOUIS THEODORE , PhD, is Professor in the Chemical Engineering Department of Manhattan College, in New York City. He has received awards from the International Air and Waste Management Association and the American Society for Engineering Education.

ROBERT G. KUNZ , PhD, is an environmental consultant with three decades of experience in the petroleum and chemical industries. He is the recipient of the Water Pollution Control Federation's Harrison Prescott Eddy Medal.


Reviews 1

Choice Review

As society comes to grips with the burgeoning potential of nanotechnology, its impact on the environment and health also needs to be assessed. Theodore (chemical engineering, Manhattan College) and environmental consultant Kunz attempt to create the first nontechnical overview of this subject. Though their aim is laudable, the book suffers from lack of focus and perhaps lack of data currently available concerning environmental impacts. Much of the book focuses on general topics of environmental engineering, e.g., the general workings of municipal sewerage systems, instead of concepts related to the unique challenges of nanotechnology, e.g., introducing nanowaste into water systems. Synopses of current air, water, and solid waste management systems and regulations, as well as detailed discussions of the implications of many non-nano-specific pollutants, such as radon, sulfur dioxide, and nuclear waste, take up a large part of the book, and little if any attempt was made to tie these discussions into the greater implication for nanomaterials. Readers will have only a slightly less superficial idea of the unique risks associated with nanotechnology, but will have a much better idea of the basic principles of how pollutants are managed in current US regulatory framework. ^BSumming Up: Recommended. Upper-division undergraduates; graduate students; professionals. M. Fosmire Purdue University


Table of Contents

Preface
ForewordRita DÆAquino
1 Nanotechnology/Environmental Overview.
1.1 Introduction
1.2 Survey of Nanotechnology Applications
1.3 Legal Considerations for Nanotechnology by A. Calderone
1.4 Recent Patent Activity
1.5 Environmental Implications
1.6 Current Environmental Regulations
1.7 Classification and Sources of Pollutants
1.8 Effects of Pollutants
1.9 Text Contents
1.10 Summary
References
2 Nanotechnology: Turning Basic Science Into RealitySuzanne A. Shelley
2.1 Introduction
2.2 Basic Chemistry and Size-Related Properties
2.3 Nanotechnology: Prime Materials and Manufacturing Methods
2.4 Carbon Nanotubes and Buckyballs
2.5 Current and Future Market Applications
2.6 Analytical Methods
2.7 Health and Safety Issues: Ethical, Legal, and Societal Implications
2.8 Funding Future Developmental Efforts
2.9 Summary
References
3 Air Issues.
3.1 Introduction
3.2 Air Pollution Control Equipment
3.3 Atmospheric Dispersion Modeling
3.4 Stack Design
3.5 Indoor Air Quality
3.6 Monitoring Methods
3.7 Summary
References
4 Water Issues.
4.1 Introduction
4.2 Industrial Wastewater Management
4.3 Municipal Wastewater Treatment
4.4 Dispersion Modeling in Water Systems
4.5 Monitoring Methods
4.6 Summary
References
5 Solid Waste Issues.
5.1 Introduction
5.2 Industrial Waste Management
5.3 Municipal Solid Waste Management
5.4 Hospital Waste Management
5.5 Nuclear Waste Management
5.6 Metals
5.7 Superfund
5.8 Monitoring Methods
5.9 Summary
References
6 Multimedia Analysis.
6.1 Introduction
6.2 Historical Perspective
6.3 Multimedia Application: A Chemical Plant
6.4 Multimedia Application: Products and Services
6.5 Multimedia Application: A Hazardous Waste Incineration Facility
6.6 Education and Training
6.7 Summary
References
7 Health Risk Assessment.
7.1 Introduction
7.2 Health Risk Assessment Evaluation Process
7.3 Why Use Risk-Based Decision Making?
7.4 Risk-Based Corrective Action Approach
7.5 Statutory Requirements Involving Environmental Communication
7.6 Public Perception of Risk
7.7 Risk Communication
7.8 Seven Cardinal Rules of Risk Communication
7.9 Summary
References
8 Hazard Risk Assessment.
8.1 Introduction
8.2 Superfund Amendments and Reauthorization of Act of 1986
8.3 Need For Emergency Response Planning
8.4 Emergency Planning
8.5 Hazards Survey
8.6 Training of Personnel
8.7 Hazard Risk Assessment Evaluation Process
8.8 Summary
References
9 Ethical Considerations.
9.1 Introduction
9.2 Air Pollution
9.3 Water Pollution
9.4 Solid Waste Pollution
9.5 Health Concerns
9.6 Hazard Concerns
9.7 Summary
References
10 Future Trends.
10.1 Introduction
10.2 Air Issues
10.3 Water Issues
10.4 Solid Waste Issues
10.5 Multimedia Concerns and Hazards
10.6 Health and Hazard Risk Assessment
10.7 Environmental Ethics
10.8 Environmental Audits
10.9 ISO 14000
10.10 Summary
References
Name Index
Subject Index
Go to:Top of Page