Skip to:Content
|
Bottom
Cover image for Heat and fluid flow in microscale and nanoscale structures
Title:
Heat and fluid flow in microscale and nanoscale structures
Series:
International series on developments in heat transfer ; 13
Publication Information:
Southampton : WIT, 2004
ISBN:
9781853128936

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000004604017 QC320 H425 2004 Open Access Book Book
Searching...

On Order

Summary

Summary

This research book gives a general introduction to gas turbine heat transfer topics and also specialises in topics such as external and internal blade cooling, combuster wall cooling, leading and trailing edge cooling and recuperators.


Table of Contents

R.B. PetersonG. Chen and B. Yang and W. LiuS.T. Huxtable and A.R. Abramson and A. MajumdarW.P. King and K.E. GoodsonR. KumarC.-H. Fan and J.P. LongtinR. Sayegh and M. Faghri and Y. Asako and B. SundenV.P. CareyT. Ohara
Prefacep. xiii
Chapter 1 Miniature and microscale energy systemsp. 1
1 Introductionp. 1
2 Overviewp. 2
2.1 Microscale energy systemsp. 4
2.2 Mesoscale energy systemsp. 5
3 Scalingp. 12
3.1 Scaling methodologyp. 13
3.2 Common phenomena important in energy systemsp. 14
3.3 TEC examplep. 21
3.4 Heat engine examplep. 23
3.5 Other thermal systemsp. 24
4 Thermally based power systemsp. 26
4.1 A theoretical model for size limitsp. 27
4.2 Techniques for thermal managementp. 33
5 Future directionsp. 36
5.1 Conventional mesoscopic devicesp. 36
5.2 High ZT thermal electric conversionp. 37
Chapter 2 Nanostructures for thermoelectric energyp. 45
1 Introductionp. 47
2 Thermoelectric effects and devices with bulk materialsp. 49
2.1 Thermoelectric cooling devicesp. 50
2.2 Thermoelectric power generation devicesp. 53
2.3 Thermoelectric transport propertiesp. 53
3 Nanostructures for solid-state energy conversionp. 57
3.1 Some recent experimental results on low-dimensional thermoelectricsp. 59
3.2 General transport picturep. 63
3.3 Coherent electron and phonon transport in nanostructuresp. 66
3.4 Incoherent electron and phonon transport in nanostructuresp. 73
3.5 Transport in the partially coherent regimep. 80
4 Summaryp. 82
Chapter 3 Heat transport in superlattices and nanowiresp. 93
1 Introductionp. 93
2 Superlatticesp. 94
3 Nanowires and nanotubesp. 94
3.1 Nanowiresp. 95
3.2 Nanotubesp. 96
4 Heat transport in bulk materials by phononsp. 97
4.1 Phonon scatteringp. 100
5 Heat transport in low-dimensional structuresp. 104
5.1 Acoustic impedance mismatch at a single interfacep. 105
5.2 Phonon spectra mismatchp. 106
5.3 Phonon tunnelingp. 107
5.4 Phonon wave interference and mini-bandgap formationp. 107
5.5 Interface scatteringp. 110
6 Survey of previous workp. 111
6.1 Superlatticesp. 112
6.2 Nanowires and nanotubesp. 119
7 Summaryp. 122
Chapter 4 Thermomechanical formation and thermal detection of polymer nanostructuresp. 131
1 Introductionp. 131
1.1 Motivation for AFM data storagep. 132
1.2 Review of thermomechanical data storagep. 134
1.3 Chapter overviewp. 137
2 Relaxation kinetics in nanostructured polymer filmsp. 137
2.1 Fundamentals of mass transport in confined soft materialsp. 138
2.2 Measuring flow characteristics in thin, nanostructured polymer filmsp. 140
3 Modeling and simulation of nanometer-scale thermomechanical data bit formationp. 146
3.1 Thermal analysis of the cantilever tip and polymer layerp. 148
3.2 Bit writing analysisp. 151
4 Thermal data reading and topography mappingp. 157
5 Summary and conclusionsp. 161
Chapter 5 Two-phase flow microstructures in thin geometries: multi-field modellingp. 173
1 Introductionp. 173
2 Global characteristicsp. 175
2.1 Flow patterns in thin channelsp. 175
2.2 Pressure drop and heat transferp. 178
2.3 Summaryp. 181
3 Local flow characteristicsp. 182
3.1 Ensemble averaging approachp. 182
3.2 Multi-field modeling approachp. 183
3.3 Governing equationsp. 184
3.4 Forces acting on a bubble in a narrow spacep. 185
3.5 Annular flow forces (cl-dv)p. 192
3.6 Droplet modelsp. 201
3.7 Flow regime transition modelingp. 205
3.8 Heat transfer modelsp. 209
3.9 Turbulence modelsp. 212
3.10 Assessment of the multi-field modelp. 213
4 Summaryp. 216
Chapter 6 Radiative energy transport at the spatial and temporal micro/nanoscalesp. 225
1 Introductionp. 225
2 Fundamentalsp. 227
2.1 Properties of electromagnetic radiationp. 227
2.2 Sources of radiation in thermal engineeringp. 230
2.3 Radiation-matter interactionsp. 234
2.4 Characteristic length, time, and structure regimes for radiation-material interactionsp. 247
3 Applicationsp. 251
3.1 Ultrafast laser materials processingp. 251
3.2 Laser scanning microscopy for biological systemsp. 257
4 Future directions and concluding remarksp. 265
Chapter 7 Direct simulation Monte Carlo of gaseous flow and heat transfer in a microchannelp. 273
1 Introductionp. 273
2 Description of the DSMC methodp. 276
2.1 Gridsp. 276
2.2 Molecular approximationp. 276
2.3 Time stepp. 277
2.4 Molecular modelsp. 277
2.5 Molecular movementp. 277
2.6 Collisions between moleculesp. 279
2.7 Boundary interactionp. 281
3 DSMC simulation of microchannelp. 282
3.1 Computational methodologyp. 282
3.2 Description of the problemp. 284
3.3 Methodology of calculating important parametersp. 286
4 Results and discussionp. 288
4.1 Numerical criteriap. 288
4.2 Effects of cell sizep. 289
4.3 Pressure distributionp. 289
4.4 Velocity profilep. 292
4.5 Slip velocityp. 292
4.6 Shear stressp. 293
4.7 Friction coefficientp. 293
4.8 Slip temperaturep. 298
4.9 Nusselt numberp. 299
5 Conclusionsp. 299
Chapter 8 DSMC modeling of near-interface transport in liquid-vapor phase-change processes with multiple microscale effectsp. 303
1 Introductionp. 303
2 Phase equilibrium in microscale multiphase systemsp. 304
2.1 Ultra-small bubbles and dropletsp. 304
2.2 Ultra-thin liquid filmsp. 306
3 Molecular transport at interfacesp. 311
4 High Knudsen number and nonequilibrium effectsp. 318
5 Variation of interfacial tension with interface curvaturep. 320
6 Liquid phase and interfacial region effectsp. 320
7 DSMC modeling of combined effects during vaporization and condensationp. 322
7.1 Post nucleation growth of microdropletsp. 323
7.2 Other processes involving multiple microscale effectsp. 337
8 Concluding remarksp. 343
Chapter 9 Molecular dynamics simulation of nanoscale heat and fluid flowp. 349
1 Introductionp. 349
2 Basic equations and finite difference schemep. 350
2.1 Basic equation for translational motion of moleculesp. 350
2.2 Finite difference schemep. 351
2.3 Rotational motion of polyatomic moleculesp. 352
2.4 Deformation of molecules and intramolecular vibrationp. 354
3 Intermolecular potential modelp. 354
3.1 Lennard-Jones potential model for spherical moleculesp. 355
3.2 Intermolecular potential model for a complex molecule: waterp. 357
4 Macroscopic propertiesp. 359
4.1 Quantity of statep. 359
4.2 Transport propertiesp. 361
5 Boundary conditions and simulation systemp. 363
5.1 Initial conditionp. 363
5.2 Periodic boundary conditionp. 364
5.3 Nonequilibrium system with a velocity and/or temperature gradientp. 366
5.4 Liquid-vapor coexistence system and determination of saturation curvep. 367
5.5 Solid wall and solid-liquid interfacep. 368
6 MD application to heat and fluid flowp. 369
7 Future developmentp. 369
Go to:Top of Page