Skip to:Content
|
Bottom
Cover image for Application-specific integrated circuits
Title:
Application-specific integrated circuits
Publication Information:
Reading, MA : Addison-Wesley, 1997
ISBN:
9780201500226

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000003660515 TK7874.6 S65 1997 Open Access Book Book
Searching...
Searching...
30000003890187 TK7874.6 S65 1997 Open Access Book Book
Searching...

On Order

Summary

Summary

A comprehensive guide to application-specific integrated circuits (ASICs) describing the latest methods in VLSI-systems design and covering both semicustom and programmable ASIC types. First describing the fundamentals of digital logic design and the physical features of each ASIC type, the book addresses both ASIC logic design and physical design. Includes separate chapters and appendices on both Verilog and VHDL, including material from IEEE standards. Annotation copyrighted by Book News, Inc., Portland, OR


Author Notes

About Michael Smith

Michael Smith is both an experienced ASIC designer and a creative educator, with support from the National Science Foundation, and an array of Silicon Valley companies, including Viewlogic, VLSI Technology, Compass Design Automation, Xilinx, and Actel. Smith holds a B.A. from Cambridge University in the U.K. and a Ph.D. from Stanford. He is a recipient of the NSF Presidential Young Investigator Award.



0201500221AB04062001


Excerpts

Excerpts

In 1988 I began to teach full-custom VLSI design. In 1990 I started teaching ASIC design instead, because my students found it easier to get jobs in this field. I wrote a proposal to The National Science Foundation (NSF) to use electronic distribution of teaching material. Dick Lyon helped me with preparing the first few CD-ROMs at Apple, but Chuck Seitz, Lynn Conway, and others explained to me that I was facing a problem that Carver Mead and Lynn had experienced in trying to get the concept of multichip wafers adopted. It was not until the publication of the Mead-Conway text that people accepted this new idea. It was suggested that I must generate interest using a conventional format before people would use my material in a new one (CD-ROM or the Internet). In 1992 I stopped writing papers and began writing this book-a result of my experiments in computer-based education. I have nearly finished this book twice. The first time was a copy of my notes. The second time was just before the second edition of Weste and Eshragian was published-a hard act to follow. In order to finish in 1997 I had to stop updating and including new ideas and material and now this book consists of three parts: Chapters 1-8 are an introduction to ASICs, 9-14 cover ASIC logical design, and 15-17 cover the physical design of ASICs. The book is intended for a wide audience. It may be used in an undergraduate or graduate course. It is also intended for those in industry who are involved with ASICs. Another function of this book is an "ASIC Encyclopedia," and therefore I have kept the background material needed to a minimum. The book makes extensive use of industrial tools and examples. The examples in Chapters 2 and 3 use tools and libraries from MicroSim (PSpice), Meta Software (HSPICE), Compass Design Automation (standard-cell and gate-array libraries), and Tanner Research (L-Edit). The programmable ASIC design examples in Chapter 4-8 use tools from Compass, Synopsys, Actel, Altera, and Xilinx. The examples in Chapter 9 (covering low-level design entry) used tools from Exemplar, MINC, AMD, UC Berkeley, Compass, Capilano, Mentor Graphics Corporation, and Cadence Design Automation. The VHDL examples in Chapter 10 were checked using QuickVHDL from Mentor, V-System Plus from Model Technology, and Scout from Compass. The Verilog examples in Chapter 11 were checked using Verilog-XL from Cadence, V-System Plus, and VeriWell from Wellspring Solutions. The logic synthesis examples in Chapter 12 were checked with the ASIC Synthesizer product family from Compass and tools from Mentor, Synopsys, and UC Berkeley. The simulation examples in Chapter 13 were checked with QuickVHDL, V-System/Plus, PSpice, Verilog-XL, DesignWorks from Capilano Computing, CompassSim, QSim, MixSim, and HSPICE. The test examples in Chapter 14 were checked using test software from Compass, Cadence, Mentor, Synopsys and Capilano's DesignWorks. The physical design examples in Chapters 15-17 were generated and tested using Preview, Gate Ensemble, and Cell Ensemble (Cadence) as well as ChipPlanner, ChipCompiler, and PathFinder (Compass). All these tools are installed at the University of Hawaii. I wrote the text using FrameMaker. This allows me to project the text and figures using an LCD screen and an overhead projector. I used a succession of Apple Macintosh computers: a PowerBook 145, a 520, and lastly a 3400 with 144 MB of RAM, which made it possible for me to create updates to the index in just under one minute. Equations are "live" in FrameMaker. Thus, can be updated in a lecture and the new result displayed. The circuit layouts are color EPS files with enhanced B&W PICT previews created using L-Edit from Tanner Research. All of the Verilog and VHDL code examples, compiler and simulation input/output, and the layout CIF that were used in the final version are included as conditional (hidden) text in the FrameMaker document, which is approximately 200 MB and just over 6,000 pages (my original source material spans fourteen 560 MB optical disks). Software can operate on the hidden text, allowing, for example, a choice of simulators to run the HDL code live in class. I converted draft versions of the VHDL and Verilog LRMs and related standards to FrameMaker and built hypertext links to my text, but copyright problems will have to be solved before this type of material may be published. I drew all the figures using FreeHand. They are "layered" allowing complex drawings to be built-up slowly or animated by turning layers on or off. This is difficult to utilize in book form, but can be done live in the classroom. A course based on FPGAs can use Chapter 1 and Chapters 4-8. A course using commercial semicustom ASIC design tools may use Chapters 1-2 or Chapters 1-3 and then skip to Chapter 9 if you use schematic entry, Chapter 10 (if you use VHDL), or Chapter 11 (if you use Verilog) together with Chapter 12. All classes can use Chapters 13 and 14. FPGA-based classes may skim Chapters 15-17, but classes in semicustom design should cover these chapters. The chapter dependencies-Y (X) means Chapter Y depends on X-are approximately: 1, 2(1), 3(2), 4(2), 5(4), 6(5), 7(6), 8(7), 9(2), 10(2), 11(2), 12(10 or 11), 13(2), 14(13), 15(2), 16(15), 17(16). I used the following references to help me with the orthography of complex terms, style, and punctuation while writing: Merriam-Webster's Collegiate Dictionary, 10th edition, 1996, Springfield, MA: Merriam-Webster, ISBN 0-87779-709-9, PE1628.M36; The Chicago Manual of Style, 14th edition, Chicago: University of Chicago Press, 1993, ISBN 0-226-10389-7, Z253.U69; and Merriam-Webster's Standard American Style Manual, 1985, Springfield, MA: Merriam-Webster, ISBN 0-87779-133-3, PN147.W36. A particularly helpful book on technical writing is BUGS in Writing by Lyn DuprE, 1995, Reading, MA: Addison-Wesley, ISBN 0-201-60019-6, PE1408.D85 (this book grew from Lyn DuprE's unpublished work, Style SomeX, which I used). The bibliography at the end of each chapter provides alternative sources if you cannot find what you are looking for. I have included the International Standard Book Number (ISBN) and Library of Congress (LOC) Call Number for books, and the International Standard Serial Number (ISSN) for journals (see the LOC information system, LOCIS, at http://www.loc.gov). I did not include references to material that I could not find myself (except where I have noted in the case of new or as yet unpublished books). The electronic references given in this text have (a last) access date of 4/19/97 and omit enclosing<>if the reference does not include spaces. I receive a tremendous level of support and cooperation from industry in my work. I thank the following for help with this project: Cynthia Benn and Lyn DuprE for editing; Helen Goldstein, Peter Gordon, Susan London-Payne, Tracy Russ, and Juliet Silveri, all at Addison-Wesley; Matt Bowditch and Kim Arney at Argosy; Richard Lyon, Don North, William Rivard, Glen Stone, the managers of the Newton group, and many others at Apple Computer who provided financial support; Apple for providing support in the form of software and computers; Bill Becker, Fern Forcier, Donna Isidro, Mike Kliment, Paul McLellan, Tom Schaefer, Al Stein, Rich Talburt, Bill Walker, and others at Compass Design Automation and VLSI Technology for providing the opportunity for me to work on this book over many years and allowing me to test material inside these companies and on lecture tours they sponsored; Chuck Seitz at Caltech; Joseph Cavallaro, Bernie Chern, Jerry Dillion, Mike Foster, and Paul Hulina at the NSF; the NSF for financial support with a Presidential Young Investigator Award; Jim Rowson and Doug Fairbairn; Constantine Anagnostopolous, Pin Tschang and members of the ASIC design groups at Kodak for financial support; the disk-drive design group at Digital Equipment Corp. (Massachusetts), Hewlett-Packard, and Sun Microsystems for financial support; Ms. MOSIS and all of the staff at MOSIS who each have helped me at one point or another by providing silicon, technical support, and documentation; Bob Brodersen, Roger Howe, Randy Katz, and Ed Lee of UC Berkeley for help while I was visiting UCB; James Plummer of Stanford, for providing me with access to the Terman Engineering Library as a visiting scholar, as well as Abbas El Gamal and Paul Losleben, also at Stanford, for help on several occasions; Don Bouldin at University of Tennessee; Krzysztof Kozminski at MCNC for providing Uncle layout software; Gershom Kedem at Duke University for the public domain tools his group has written; Sue Drouin, JosE De Castro, and others at Mentor Graphics Corporation in Oregon for providing documentation and tools; Vahan Kasardjhan, Gail Grego, Michele Warthen, Steve Gardner, and others at the University Program at Cadence Design Automation in San Jose who helped with tools, documentation, and support; Karen Dorrington and the Cadence group in Massachusetts; Andy Haines, Tom Koppin, Sherri Mieth, Velma Miller, Robert Nalesnik, Mike Sarpa, Telle Whitney, and others at Actel for software, hardware, parts, and documentation; Peter Alfke, Leslie Baxter, Brad Fawcett, Chris Kingsley, Karlton Lau, Rick Mitchell, Scott Nance, and Richard Ravel at Xilinx for support, parts, software, and documentation; Greg Hedmann at NorComp for data on FPGAs; Anna Acevedo, Suzanne Bailey, Antje MacNaughton, Richard Terrell, and Altera for providing software, hardware programmers, parts, and documentation; the documentation group and executive management at LSI Logic for tools, libraries, and documentation; Toshiba, NEC, AT&T/NCR, Lucent, and Hitachi (for documentation); NEC for their visiting scholar program at UH; Fred Furtek, Oscar Naval, and Claire Pinkham at Concurrent Logic, Randy Fish at Crosspoint, and Gary Banta at Plus Logic-all for documentation; Paul Titchener and others at Comdisco (now part of Cadence Design Automation) for providing design tools; John Tanner and his staff at Tanner Research for providing their tools and documentation; Mahendra Jain and Nanci Magoun, who let me debug early prototypes at the IDEA conference organized by ASIC Technology and News; Exemplar for providing documentation on its tools; MINC for providing a copy of its FPGA software and documentation; Claudia Traver and Synopsys for tools and documentation; Mentor Graphics Corporation for providing its complete range of software; Alain Hanover and others at ViewLogic for providing tools; Mary Shepherd and Jerry Walker at IEEE for help with permissions; Meta Software for providing HSPICE; Chris Dewhurst and colleagues at Capilano Computing for its design tools; Greg Seltzer (Model Technology) and Charley Rowley for providing V-System Plus with online documentation prototypes; Farallon and Telebit for the software and hardware I used for early experiments with telelectures. Many research students at the University of Hawaii helped me throughout this project including: Chin Huang, Clem Portmann, Christeen Gray, Karlton Lau, Jon Otaguro, Moe Lwin, Troy Stockstad, Ron Jorgenson, Derwin Mattos, William Rivard, Wendy Ching, Anil Aggrawal, Sudhakar Jilla, Linda Xu, Angshuman Saha, Harish Pareek, Claude van Ham, Wen Huang, Kumar Vadhri, Yan Zhong, Yatin Acharya, and Barana Ranaweera. Each of the classes that used early versions of this text at the University of Hawaii at Manoa have also contributed by finding errors. The remaining errors are mine. Michael John Sebastian Smith Palo Alto and Honolulu, 1997 0201500221P04062001 Excerpted from Application-Specific Integrated Circuits by Michael John Sebastian Smith All rights reserved by the original copyright owners. Excerpts are provided for display purposes only and may not be reproduced, reprinted or distributed without the written permission of the publisher.

Table of Contents

1 Introduction to ASICs
Types of ASIC
Full-Custom ASICs
Standard-Cell?Based ASICs
Gate-Array?Based ASICs
Channeled Gate-Array
Channelless Gate-Array
Structured Gate-Array
Programmable Logic Devices
Field-Programmable Gate Arrays
Design Flow
Case Study
Economics of ASICs
Comparison Between ASIC Technologies
Product Cost
ASIC Fixed Costs
ASIC Variable Costs
ASIC Cell Libraries
2 CMOS Logic
CMOS Transistors
P-Channel Transistors
Velocity Saturation
SPICE Models
Logic Levels
The CMOS Process
Sheet Resistance
CMOS Design Rules
Combinational Logic Cells
Pushing Bubbles
Drive Strength
Transmission Gates
Exclusive-OR Cell
Sequential Logic Cells
Latch
Flip-Flop
Clocked Inverter
Datapath Logic Cells
Datapath Elements
Adders
A Simple Example
Multipliers
Other Arithmetic Systems
Other Datapath Operators
I/O Cells
Cell Compilers
3 ASIC Library Design
Transistors as Resistors
Transistor Parasitic Capacitance
Junction Capacitance
Overlap Capacitance
Gate Capacitance
Input Slew Rate
Logical Effort
Predicting Delay
Logical Area and Logical Efficiency
Logical Paths
Multistage Cells
Optimum Delay
Optimum Number of Stages
Library-Cell Design
Library Architecture
Gate-Array Design
Standard-Cell Design
Datapath-Cell Design
4 Programmable ASICs
The Antifuse
Metal?
Metal Antifuse
Static RAM
EPROM and EEPROM Technology
Practical Issues
FPGAs in Use
Specifications
PREP Benchmarks
FPGA Economics
FPGA Pricing
Pricing Examples
5 Programmable ASIC Logic Cells
Actel
ACT 1 Logic Module
Shannones Expansion Theorem
Multiplexer Logic as Function Generators
ACT 2 and ACT 3 Logic Modules
Timing Model and Critical Path
Speed Grading
Worst-Case Timing
Actel Logic Module Analysis
Xilinx LCA
XC3000 CLB
XC4000 Logic Block
XC5200 Logic Block
Xilinx CLB Analysis
Altera FLEX
Altera MAX
Logic Expanders
Timing Model
Power Dissipation in Complex PLDs
6 Programmable ASIC I/O Cells
DC Output
Totem-Pole Output
Clamp Diodes
AC Output
Supply Bounce
Transmission Lines
DC Input
Noise Margins
Mixed-Voltage Systems
AC Input
Metastability
Clock Input
Registered Inputs
Power Input
Power Dissipation
Power-On Reset
Xilinx I/O Block
Boundary Scan
Other I/O Cells
7 Programmable ASIC Interconnect
Actel ACT
Routing Resources
Go to:Top of Page