Cover image for Vehicle propulsion systems : introduction to modeling and optimization
Title:
Vehicle propulsion systems : introduction to modeling and optimization
Personal Author:
Publication Information:
New York, NY : Springer, 2005
ISBN:
9783540251958
Added Author:

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010093228 TL210 G89 2005 Open Access Book Book
Searching...

On Order

Summary

Summary

Automobiles are responsible for a substantial part of the world's consumption of primary energy, mostly fossil liquid hydrocarbons. The reduction of the fuel consumption of these vehicles has become a top priority. Many ideas to reach that objective have been presented. In most cases these systems are more complex than the traditional approaches. For such complex systems a heuristic design approach fails. The only way to deal with this situation is to employ model-based methods. This text provides an introduction to the mathematical modeling and subsequent optimization of vehicle propulsion systems and their supervisory control algorithms. Book jacket.


Table of Contents

1 Introductionp. 1
1.1 Objectivesp. 1
1.2 Upstream Processesp. 4
1.3 Energy Density of On-Board Energy Carriersp. 9
1.4 Pathways to Better Fuel Economyp. 11
2 Vehicle Energy and Fuel Consumption - Basic Conceptsp. 13
2.1 Vehicle Energy Losses and Performance Analysisp. 13
2.1.1 Energy Lossesp. 13
2.1.2 Performance and Drivabilityp. 18
2.1.3 Vehicle Operating Modesp. 20
2.2 Energy Demand in Driving Cyclesp. 21
2.2.1 Test Cyclesp. 21
2.2.2 Mechanical Energy Demandp. 22
2.2.3 Some Remarks on the Energy Consumptionp. 27
2.3 Methods and Toolsp. 31
2.3.1 Average Operating Point Approachp. 31
2.3.2 Quasistatic Approachp. 32
2.3.3 Dynamic Approachp. 36
2.3.4 Optimization Problemsp. 37
2.3.5 Software Toolsp. 38
3 IC-Engine-Based Propulsion Systemsp. 41
3.1 IC Engine Modelsp. 41
3.1.1 Introductionp. 41
3.1.2 Normalized Engine Variablesp. 42
3.1.3 Engine Efficiency Representationp. 43
3.2 Gear-Box Modelsp. 45
3.2.1 Introductionp. 45
3.2.2 Selection of Gear Ratiosp. 45
3.2.3 Gear-Box Efficiencyp. 47
3.2.4 Losses in Friction Clutches and Torque Convertersp. 49
3.3 Fuel Consumption of IC Engine Power Trainsp. 52
3.3.1 Introductionp. 52
3.3.2 Average Operating Point Methodp. 52
3.3.3 Quasistatic Methodp. 54
4 Models of Electric and Hybrid-Electric Propulsion Systemsp. 57
4.1 Electric Propulsion Systemsp. 57
4.2 Hybrid-Electric Propulsion Systemsp. 58
4.2.1 System Configurationsp. 59
4.2.2 Power Flowp. 62
4.2.3 Concepts Realizedp. 67
4.2.4 Modeling of Hybrid Vehiclesp. 67
4.3 Electric Motorsp. 68
4.3.1 Quasistatic Modeling of Electric Motorsp. 72
4.3.2 Dynamic Modeling of Electric Motorsp. 87
4.4 Modeling of Generatorsp. 89
4.5 Batteriesp. 89
4.5.1 Quasistatic Modeling of Batteriesp. 92
4.5.2 Dynamic Modeling of Batteriesp. 101
4.6 Supercapacitorsp. 105
4.6.1 Quasistatic Modeling of Supercapacitorsp. 106
4.6.2 Dynamic Modeling of Supercapacitorsp. 109
4.7 Electric Power Linksp. 110
4.7.1 Quasistatic Modeling of Electric Power Linksp. 111
4.7.2 Dynamic Modeling of Electric Power Linksp. 112
4.8 Torque Couplersp. 113
4.8.1 Quasistatic Modeling of Torque Couplersp. 114
4.8.2 Dynamic Modeling of Torque Couplersp. 115
4.9 Planetary Gear Setsp. 116
4.9.1 Quasistatic Modeling of Planetary Gear Setsp. 116
4.9.2 Dynamic Modeling of Planetary Gear Setsp. 119
5 Models of Hybrid-Inertial and Hybrid-Hydraulic Propulsion Systemsp. 121
5.1 Short-Term Storage Systemsp. 121
5.2 Flywheelsp. 124
5.2.1 Quasistatic Modeling of Flywheel Accumulatorsp. 127
5.2.2 Dynamic Modeling of Flywheel Accumulatorsp. 130
5.3 Continuously Variable Transmissionsp. 130
5.3.1 Quasistatic Modeling of CVTsp. 131
5.3.2 Dynamic Modeling of CVTsp. 134
5.4 Hydraulic Accumulatorsp. 135
5.4.1 Quasistatic Modeling of Hydraulic Accumulatorsp. 136
5.4.2 Dynamic Modeling of Hydraulic Accumulatorsp. 142
5.5 Hydraulic Pumps/Motorsp. 143
5.5.1 Quasistatic Modeling of Hydraulic Pumps/Motorsp. 144
5.5.2 Dynamic Modeling of Hydraulic Pumps/Motorsp. 146
6 Models of Fuel-Cell Propulsion Systemsp. 147
6.1 Fuel-Cell Electric Vehicles and Fuel-Cell Hybrid Vehiclesp. 147
6.1.1 Concepts Realizedp. 149
6.2 Fuel Cellsp. 149
6.2.1 Quasistatic Modeling of Fuel Cellsp. 161
6.2.2 Dynamic Modeling of Fuel Cellsp. 175
6.3 Reformersp. 180
6.3.1 Quasistatic Modeling of Fuel Reformersp. 183
6.3.2 Dynamic Modeling of Fuel Reformersp. 187
7 Supervisory Control Algorithmsp. 189
7.1 Introductionp. 189
7.2 Heuristic Control Strategiesp. 190
7.3 Optimal Control Strategiesp. 192
7.4 Sub-Optimal Control Strategiesp. 196
7.4.1 Equivalence Factorsp. 197
7.4.2 Equivalent Consumption Minimization Strategyp. 199
7.4.3 T-ECMSp. 201
8 Appendix I - Case Studiesp. 205
8.1 Case Study 1: Gear Ratio Optimizationp. 205
8.1.1 Introductionp. 205
8.1.2 Software Structurep. 205
8.1.3 Resultsp. 207
8.2 Case Study 2: IC Engine and Flywheel Powertrainp. 209
8.2.1 Introductionp. 209
8.2.2 Modeling and Experimental Validationp. 211
8.2.3 Numerical Optimizationp. 212
8.2.4 Resultsp. 214
8.3 Case Study 3: Supervisory Control Strategies for a Parallel HEVp. 216
8.3.1 Introductionp. 216
8.3.2 Modeling and Experimental Validationp. 216
8.3.3 Control Strategiesp. 217
8.3.4 Resultsp. 219
8.4 Case Study 4: Optimal Rendez-Vous Maneuversp. 225
8.4.1 Modeling and Problem Formulationp. 226
8.4.2 Optimal Control for the Case of a Specified Final Distancep. 228
8.4.3 Optimal Control for the Case of an Unspecified Final Distancep. 232
8.5 Case Study 5: Fuel Optimal Trajectories of a Racing FCEVp. 236
8.5.1 Modelingp. 237
8.5.2 Optimal Controlp. 241
8.5.3 Resultsp. 243
8.6 Case Study 6: Nonpredictive Optimal Control of a Series Hybrid Busp. 246
8.6.1 Modeling and Validationp. 246
8.6.2 Optimal Controlp. 249
8.6.3 Resultsp. 253
9 Appendix II - Optimal Control Theoryp. 257
9.1 Parameter Optimization Problemsp. 257
9.1.1 Problems Without Constraintsp. 257
9.1.2 Numerical Solutionp. 259
9.1.3 Minimization with Equality Constraintsp. 261
9.1.4 Minimization with Inequality Constraintsp. 264
9.2 Optimal Controlp. 266
9.2.1 Introductionp. 266
9.2.2 Optimal Control for the Basic Problemp. 266
9.2.3 First Integral of the Hamiltonianp. 270
9.2.4 Optimal Control with Specified Final Statep. 272
9.2.5 Optimal Control with Unspecified Final Timep. 273
9.2.6 Optimal Control with Restrictions of the Control Variablep. 273
Referencesp. 279