Skip to:Content
|
Bottom
Cover image for Lumped elements for RF and microwave circuits
Title:
Lumped elements for RF and microwave circuits
Personal Author:
Series:
Artech House microwave library
Publication Information:
Norwood, MA : Artech House, 2003
ISBN:
9781580533096

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000003589524 TK7874.54 B33 2003 Open Access Book Book
Searching...

On Order

Summary

Summary

Due to the unprecedented growth in wireless applications, development of low-cost solutions for RF and microwave communication systems has become of great importance. This is a comprehensive treatment of lumped elements, which are playing a critical role in the development of the circuits that make these cost-effective systems possible. The work offers an in-depth understanding of the different types of RF and microwave circuit elements, including inductors, capacitors, resistors, transformers, via holes, airbridges and crossovers. Supported with over 220 equations and more than 200 illustrations, it covers the practical aspects of each element in detail. From materials, fabrication and analyses to design, modelling and physical, electrical and thermal applications, this resource offers coverage of the critical topics for work in the field.


Author Notes

Inder Bahl is a Distinguished Fellow of Technology at M/A-COM, Roanoke, Virginia. He earned his Ph.D. in microwave engineering from the Indian Institute of Technology


Table of Contents

Prefacep. xvii
Acknowledgmentsp. xix
1 Introductionp. 1
1.1 History of Lumped Elementsp. 1
1.2 Why Use Lumped Elements for RF and Microwave Circuits?p. 2
1.3 L, C, R Circuit Elementsp. 4
1.4 Basic Design of Lumped Elementsp. 6
1.4.1 Capacitorp. 7
1.4.2 Inductorp. 8
1.4.3 Resistorp. 8
1.5 Lumped-Element Modelingp. 9
1.6 Fabricationp. 11
1.7 Applicationsp. 12
Referencesp. 13
2 Inductorsp. 17
2.1 Introductionp. 17
2.2 Basic Definitionsp. 18
2.2.1 Inductancep. 18
2.2.2 Magnetic Energyp. 18
2.2.3 Mutual Inductancep. 20
2.2.4 Effective Inductancep. 20
2.2.5 Impedancep. 21
2.2.6 Time Constantp. 21
2.2.7 Quality Factorp. 22
2.2.8 Self-Resonant Frequencyp. 23
2.2.9 Maximum Current Ratingp. 23
2.2.10 Maximum Power Ratingp. 23
2.2.11 Other Parametersp. 23
2.3 Inductor Configurationsp. 24
2.4 Inductor Modelsp. 25
2.4.1 Analytical Modelsp. 25
2.4.2 Coupled-Line Approachp. 28
2.4.3 Mutual Inductance Approachp. 34
2.4.4 Numerical Approachp. 36
2.4.5 Measurement-Based Modelp. 38
2.5 Coupling Between Inductorsp. 45
2.5.1 Low-Resistivity Substratesp. 45
2.5.2 High-Resistivity Substratesp. 46
2.6 Electrical Representationsp. 50
2.6.1 Series and Parallel Representationsp. 50
2.6.2 Network Representationsp. 51
Referencesp. 52
3 Printed Inductorsp. 57
3.1 Inductors on Si Substratep. 58
3.1.1 Conductor Lossp. 60
3.1.2 Substrate Lossp. 63
3.1.3 Layout Considerationsp. 64
3.1.4 Inductor Modelp. 65
3.1.5 Q-Enhancement Techniquesp. 69
3.1.6 Stacked-Coil Inductorp. 80
3.1.7 Temperature Dependencep. 84
3.2 Inductors on GaAs Substratep. 86
3.2.1 Inductor Modelsp. 87
3.2.2 Figure of Meritp. 88
3.2.3 Comprehensive Inductor Datap. 88
3.2.4 Q-Enhancement Techniquesp. 104
3.2.5 Compact Inductorsp. 112
3.2.6 High Current Handling Capability Inductorsp. 116
3.3 Printed Circuit Board Inductorsp. 118
3.4 Hybrid Integrated Circuit Inductorsp. 121
3.4.1 Thin-Film Inductorsp. 121
3.4.2 Thick-Film Inductorsp. 124
3.4.3 LTCC Inductorsp. 126
3.5 Ferromagnetic Inductorsp. 127
Referencesp. 129
4 Wire Inductorsp. 137
4.1 Wire-Wound Inductorsp. 137
4.1.1 Analytical Expressionsp. 137
4.1.2 Compact High-Frequency Inductorsp. 144
4.2 Bond Wire Inductorp. 146
4.2.1 Single and Multiple Wiresp. 147
4.2.2 Wire Near a Cornerp. 150
4.2.3 Wire on a Substrate Backed by a Ground Planep. 151
4.2.4 Wire Above a Substrate Backed by a Ground Planep. 153
4.2.5 Curved Wire Connecting Substratesp. 154
4.2.6 Twisted Wirep. 155
4.2.7 Maximum Current Handling of Wiresp. 155
4.3 Wire Modelsp. 156
4.3.1 Numerical Methods for Bond Wiresp. 156
4.3.2 Measurement-Based Model for Air Core Inductorsp. 156
4.3.3 Measurement-Based Model for Bond Wiresp. 158
4.4 Magnetic Materialsp. 160
Referencesp. 161
5 Capacitorsp. 163
5.1 Introductionp. 163
5.2 Capacitor Parametersp. 165
5.2.1 Capacitor Valuep. 165
5.2.2 Effective Capacitancep. 166
5.2.3 Tolerancesp. 166
5.2.4 Temperature Coefficientp. 166
5.2.5 Quality Factorp. 167
5.2.6 Equivalent Series Resistancep. 167
5.2.7 Series and Parallel Resonancesp. 167
5.2.8 Dissipation Factor or Loss Tangentp. 170
5.2.9 Time Constantp. 170
5.2.10 Rated Voltagep. 170
5.2.11 Rated Currentp. 170
5.3 Chip Capacitor Typesp. 171
5.3.1 Multilayer Dielectric Capacitorp. 171
5.3.2 Multiplate Capacitorp. 172
5.4 Discrete Parallel Plate Capacitor Analysisp. 173
5.4.1 Vertically Mounted Series Capacitorp. 173
5.4.2 Flat-Mounted Series Capacitorp. 176
5.4.3 Flat-Mounted Shunt Capacitorp. 177
5.4.4 Measurement-Based Modelp. 178
5.5 Voltage and Current Ratingsp. 181
5.5.1 Maximum Voltage Ratingp. 181
5.5.2 Maximum RF Current Ratingp. 181
5.5.3 Maximum Power Dissipationp. 182
5.6 Capacitor Electrical Representationp. 185
5.6.1 Series and Shunt Connectionsp. 185
5.6.2 Network Representationsp. 187
Referencesp. 188
6 Monolithic Capacitorsp. 191
6.1 MIM Capacitor Modelsp. 192
6.1.1 Simple Lumped Equivalent Circuitp. 193
6.1.2 Coupled Microstrip-Based Distributed Modelp. 194
6.1.3 Single Microstrip-Based Distributed Modelp. 198
6.1.4 EC Model for MIM Capacitor on Sip. 202
6.1.5 EM Simulationsp. 204
6.2 High-Density Capacitorsp. 206
6.2.1 Multilayer Capacitorsp. 208
6.2.2 Ultra-Thin-Film Capacitorsp. 211
6.2.3 High-K Capacitorsp. 212
6.2.4 Fractal Capacitorsp. 212
6.2.5 Ferroelectric Capacitorsp. 214
6.3 Capacitor Shapesp. 216
6.3.1 Rectangular Capacitorsp. 217
6.3.2 Circular Capacitorsp. 218
6.3.3 Octagonal Capacitorsp. 218
6.4 Design Considerationsp. 220
6.4.1 Q-Enhancement Techniquesp. 220
6.4.2 Tunable Capacitorp. 223
6.4.3 Maximum Power Handlingp. 223
Referencesp. 227
7 Interdigital Capacitorsp. 229
7.1 Interdigital Capacitor Modelsp. 230
7.1.1 Approximate Analysisp. 230
7.1.2 J-Inverter Network Equivalent Representationp. 235
7.1.3 Full-Wave Analysisp. 236
7.1.4 Measurement-Based Modelp. 238
7.2 Design Considerationsp. 239
7.2.1 Compact Sizep. 239
7.2.2 Multilayer Capacitorp. 241
7.2.3 Q-Enhancement Techniquesp. 244
7.2.4 Voltage Tunable Capacitorp. 247
7.2.5 High-Voltage Operationp. 249
7.3 Interdigital Structure as a Photodetectorp. 249
Referencesp. 251
8 Resistorsp. 253
8.1 Introductionp. 253
8.2 Basic Definitionsp. 255
8.2.1 Power Ratingp. 255
8.2.2 Temperature Coefficientp. 256
8.2.3 Resistor Tolerancesp. 256
8.2.4 Maximum Working Voltagep. 256
8.2.5 Maximum Frequency of Operationp. 257
8.2.6 Stabilityp. 257
8.2.7 Noisep. 257
8.2.8 Maximum Current Ratingp. 257
8.3 Resistor Typesp. 257
8.3.1 Chip Resistorsp. 258
8.3.2 MCM Resistorsp. 258
8.3.3 Monolithic Resistorsp. 258
8.4 High-Power Resistorsp. 265
8.5 Resistor Modelsp. 267
8.5.1 EC Modelp. 268
8.5.2 Distributed Modelp. 269
8.5.3 Meander Line Resistorp. 270
8.6 Resistor Representationsp. 272
8.6.1 Network Representationsp. 272
8.6.2 Electrical Representationsp. 272
8.7 Effective Conductivityp. 274
8.8 Thermistorsp. 276
Referencesp. 276
9 Via Holesp. 279
9.1 Types of Via Holesp. 279
9.1.1 Via Hole Connectionp. 279
9.1.2 Via Hole Groundp. 281
9.2 Via Hole Modelsp. 282
9.2.1 Analytical Expressionp. 283
9.2.2 Quasistatic Methodp. 284
9.2.3 Parallel Plate Waveguide Modelp. 286
9.2.4 Method of Momentsp. 287
9.2.5 Measurement-Based Modelp. 289
9.3 Via Fencep. 290
9.3.1 Coupling Between Via Holesp. 293
9.3.2 Radiation from Via Ground Plugp. 293
9.4 Plated Heat Sink Viap. 294
9.5 Via Hole Layoutp. 294
Referencesp. 296
10 Airbridges and Dielectric Crossoversp. 299
10.1 Airbridge and Crossoverp. 299
10.2 Analysis Techniquesp. 301
10.2.1 Quasistatic Methodp. 301
10.2.2 Full-Wave Analysisp. 306
10.3 Modelsp. 308
10.3.1 Analytical Modelp. 308
10.3.2 Measurement-Based Modelp. 310
Referencesp. 315
11 Transformers and Balunsp. 317
11.1 Basic Theoryp. 318
11.1.1 Parameters Definitionp. 318
11.1.2 Analysis of Transformersp. 319
11.1.3 Ideal Transformersp. 322
11.1.4 Equivalent Circuit Representationp. 323
11.1.5 Equivalent Circuit of a Practical Transformerp. 325
11.1.6 Wideband Impedance Matching Transformersp. 326
11.1.7 Types of Transformersp. 329
11.2 Wire-Wrapped Transformersp. 329
11.2.1 Tapped Coil Transformersp. 329
11.2.2 Bond Wire Transformerp. 332
11.3 Transmission-Line Transformersp. 332
11.4 Ferrite Transformersp. 336
11.5 Parallel Conductor Winding Transformers on Si Substratep. 339
11.6 Spiral Transformers on GaAs Substratep. 341
11.6.1 Triformer Balunp. 344
11.6.2 Planar-Transformer Balunp. 345
Referencesp. 349
12 Lumped-Element Circuitsp. 353
12.1 Passive Circuitsp. 353
12.1.1 Filtersp. 353
12.1.2 Hybrids and Couplersp. 356
12.1.3 Power Dividers/Combinersp. 370
12.1.4 Matching Networksp. 372
12.1.5 Lumped-Element Biasing Circuitp. 377
12.2 Control Circuitsp. 380
12.2.1 Switchesp. 381
12.2.2 Phase Shiftersp. 387
12.2.3 Digital Attenuatorp. 390
Referencesp. 392
13 Fabrication Technologiesp. 395
13.1 Introductionp. 395
13.1.1 Materialsp. 396
13.1.2 Mask Layoutsp. 401
13.1.3 Mask Fabricationp. 401
13.2 Printed Circuit Boardsp. 402
13.2.1 PCB Fabricationp. 404
13.2.2 PCB Inductorsp. 405
13.3 Microwave Printed Circuitsp. 405
13.3.1 MPC Fabricationp. 407
13.3.2 MPC Applicationsp. 408
13.4 Hybrid Integrated Circuitsp. 410
13.4.1 Thin-Film MICsp. 410
13.4.2 Thick-Film Technologyp. 412
13.4.3 Cofired Ceramic and Glass-Ceramic Technologyp. 414
13.5 GaAs MICsp. 416
13.5.1 MMIC Fabricationp. 418
13.5.2 MMIC Examplep. 421
13.6 CMOS Fabricationp. 421
13.7 Micromachining Fabricationp. 424
Referencesp. 425
14 Microstrip Overviewp. 429
14.1 Design Equationsp. 429
14.1.1 Characteristic Impedance and Effective Dielectric Constantp. 429
14.1.2 Effect of Strip Thicknessp. 431
14.2 Design Considerationsp. 432
14.2.1 Effect of Dispersionp. 433
14.2.2 Microstrip Lossesp. 433
14.2.3 Quality Factor Qp. 435
14.2.4 Enclosure Effectp. 438
14.2.5 Frequency Range of Operationp. 443
14.2.6 Power-Handling Capabilityp. 444
14.3 Coupled Microstrip Linesp. 456
14.3.1 Even-Mode Capacitancep. 457
14.3.2 Odd-Mode Capacitancep. 458
14.3.3 Characteristic Impedancesp. 459
14.3.4 Effective Dielectric Constantsp. 459
14.4 Microstrip Discontinuitiesp. 460
14.5 Compensated Microstrip Discontinuitiesp. 461
14.5.1 Step-in-Widthp. 461
14.5.2 Chamfered Bendp. 462
14.5.3 T-Junctionp. 463
Referencesp. 465
Appendixp. 469
About the Authorp. 471
Indexp. 473
Go to:Top of Page