Skip to:Content
|
Bottom
Cover image for Microwave differential circuit design using mixed-mode S-parameters
Title:
Microwave differential circuit design using mixed-mode S-parameters
Personal Author:
Series:
Artech House microwave library
Publication Information:
Norwood, MA : Artech House Publishers, 2006
Physical Description:
1 CD-ROM ; 12 cm.
ISBN:
9781580539333
General Note:
Accompanies text of the same title : TK7876 E47 2006

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010102867 CP 4670 Computer File Accompanies Open Access Book Compact Disc Accompanies Open Access Book
Searching...

On Order

Summary

Summary

This technical title presents the theoretical background for understanding mixed-mode scattering parameter techniques and provides a practical guide to using them for microwave device design. It includes a CD-ROM with s-parameter design examples which will allow readers to explore prepared example circuits from the designs in the book.


Author Notes

William R. Eisenstadt is an associate professor in the department of electrical and computer engineering at the University of Florida
Bob Stengel is a fellow of the technical staff of Motorola Labs, Plantation, Florida
Bruce M. Thompson is a distinguished member of the technical staff at Motorola Labs, Plantation, Florida


Table of Contents

Prefacep. xiii
Acknowledgmentsp. xv
1 Differential Circuit Technologyp. 1
1.1 Introductionp. 1
1.2 Digital Versus Analog Signal Integrityp. 2
1.3 Signal Integrity Issuesp. 4
1.3.1 Rise Time, Fall Time, Duty Cycle, and Periodp. 4
1.3.2 Jitterp. 5
1.3.3 Bit Error Ratep. 7
1.3.4 Isolationp. 7
1.4 Interconnect Discontinuitiesp. 9
1.5 Differential Circuit Definitionsp. 9
1.6 Electromagnetic Couplingp. 13
1.7 Common-Mode Impedance Rejection of Differential Circuitsp. 18
1.8 Increased Distortion-Free Dynamic Range with Differential Circuitsp. 21
1.9 Nonlinear Even-Order Distortion Improvement with Differential Circuitsp. 23
1.10 Conclusionsp. 25
Referencesp. 26
2 Mixed-Mode S-Parametersp. 27
2.1 Introductionp. 27
2.2 Mode Definitionsp. 30
2.3 Mode-Specific Waves and Impedancesp. 32
2.4 Normalized Power Wavesp. 34
2.5 Mixed-Mode Scattering Parametersp. 37
2.6 Standard S-Parameter/Mixed-Mode S-Parameter Transformationp. 42
2.7 Conclusionsp. 45
Referencesp. 46
3 Transmission Lines and Systemsp. 47
3.1 Introductionp. 47
3.2 Traveling Waves and Transmission-Line Conceptsp. 48
3.3 Mode Specific S-Parameters-Isolated Transmission Linesp. 53
3.4 Mode Specific S-Parameters-Coupled Transmission Linesp. 60
3.5 Time-Domain Analysis-Coupled Transmission Linesp. 65
3.6 Distributed Mixed-Mode S-Parameter to R, L, G, and C Modelp. 66
3.7 Single-Ended Signal Application in Mixed-Mode Termsp. 71
3.8 Conclusionsp. 78
Referencesp. 78
4 Differential Low-Noise Amplifierp. 79
4.1 Introductionp. 79
4.2 DLNA Implementationp. 80
4.2.1 Ideal Mixed-Mode S-Parametersp. 81
4.2.2 Practical Matching Limitationsp. 83
4.2.3 Noise Rejectionp. 83
4.2.4 Common-Mode Gainp. 86
4.3 DLNA S-Parameters, S[subscript dd]p. 87
4.4 Neutralized DLNAp. 88
4.5 Passive Circuitsp. 90
4.6 Impedance Matchingp. 91
4.7 Cross-Mode Parametersp. 93
4.8 Common-Mode Rejectionp. 94
4.9 Supply and Ground Responsep. 96
4.10 Common-Mode Signal Postprocessingp. 97
4.11 Noise Figurep. 98
4.12 Balanced Signal Lossesp. 100
4.13 Distortion Analysisp. 103
4.14 Odd-Order Distortionp. 106
4.15 Even-Order Distortionp. 108
4.16 Conclusionsp. 112
Referencesp. 112
5 Power Splitter and Combiner Analysisp. 113
5.1 Introductionp. 113
5.2 Wilkinson Impedance Transformer Splitter/Combinerp. 114
5.3 Splitter/Combiner Mixed-Mode S-Parameter Matrixp. 115
5.4 Splitter/Combiner Standard S-Parameter Matrixp. 119
5.5 Mixed-Mode Splitter/Combiner S[superscript mm] = MS[superscript std] M[superscript -1]p. 125
5.6 Splitter General-Purpose Analysis/Specificationsp. 130
5.7 Combiner General-Purpose Analysis/Specificationsp. 137
5.8 Hybrid Splitter/Combiner and Mixed-Mode S-Parametersp. 141
5.9 Transformer Sigma/Delta Hybrid Implementationp. 144
5.10 Transformer 90[degree] Hybrid Implementationp. 149
5.11 Summary-Mixed-Mode S-Parameters Applied to Baluns and Hybridsp. 151
Referencesp. 152
6 Mixed-Mode Analysis Applied to Four-Ports and Higherp. 153
6.1 Introductionp. 153
6.2 Impedance (Z), Admittance (Y), Hybrid (H), ABCD, Chain (T), and Scattering (S) Parameter Network Matrix Modelsp. 153
6.3 Differential Band-Pass Filterp. 171
6.4 Dual Directional Couplerp. 184
6.5 Differential Isolatorp. 186
Referencesp. 191
7 Mixed-Mode and Time Domainp. 193
7.1 Introductionp. 193
7.2 Steady State AC Network Responsep. 195
7.3 Impulse Responsep. 196
7.4 Representation of Signals by a Continuum of Impulsesp. 198
7.5 Impulse Responsep. 199
7.6 Step Response and TDRp. 202
7.7 Impulse Transmission Response and TDTp. 207
7.8 Parallel, Cascade, and Feedback Connectionsp. 212
7.9 Summary of S-Parameter Applications in the Time Domainp. 214
Referencesp. 215
About the Authorsp. 217
Indexp. 219
Go to:Top of Page