Skip to:Content
|
Bottom
Cover image for Multidimensional signal, image, and video processing and coding
Title:
Multidimensional signal, image, and video processing and coding
Publication Information:
Burlington, MA : Academic Press, 2006
Physical Description:
1 CD-ROM ; 12 cm
ISBN:
9780120885169
General Note:
Accompanies text of the same title : TK5102.5 W68 2006

Contains video clips, examples, excercises, and MATLAB .m files

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010135216 CP 8981 Computer File Accompanies Open Access Book Compact Disc Accompanies Open Access Book
Searching...

On Order

Summary

Summary

Digital images have become mainstream of late notably within HDTV, cell phones, personal cameras, and many medical applications. The processing of digital images and video includes adjusting illumination, manufacturing enlargements/reductions, and creating contrast. This development has made it possible to take long forgotten, badly damaged photos and make them new again with image estimation. It can also help snapshot photographers with image restoration, a method of reducing the influence of an unsteady hand.

Dr. Woods has constructed a book for professionals and graduate students that will give them the thorough understanding of image and video processing that they need in order to contribute to this hot technology's future advances. Examples and problems at the end of each chapter help the reader digest what has just been read. Forged from a theoretical base, this exceptional book develops into an essential guide to hands-on endeavors in signal processing.


Table of Contents

Prefacep. xiii
Acknowledgmentsp. xvii
1 Two-Dimensional Signals and Systemsp. 1
1.1 Two-Dimensional Signalsp. 2
1.1.1 Separable Signalsp. 6
1.1.2 Periodic signalsp. 7
1.1.3 2-D Discrete-Space Systemsp. 9
1.1.4 Two-Dimensional Convolutionp. 11
1.1.5 Stability of 2-D Systemsp. 13
1.2 2-D Discrete-Space Fourier Transformp. 14
1.2.1 Inverse 2-D Fourier Transformp. 18
1.2.2 Fourier Transform of 2-D or Spatial Convolutionp. 19
1.2.3 Symmetry Properties of Fourier Transformp. 26
1.2.4 Continuous-Space Fourier Transformp. 28
1.3 Conclusionsp. 31
1.4 Problemsp. 31
Referencesp. 33
2 Sampling in Two Dimensionsp. 35
2.1 Sampling Theorem-Rectangular Casep. 36
2.1.1 Reconstruction Formulap. 40
2.1.2 Ideal Rectangular Samplingp. 43
2.2 Sampling Theorem-General Regular Casep. 48
2.2.1 Hexagonal Reconstruction Formulap. 52
2.3 Change of Sample Ratep. 57
2.3.1 Downsampling by Integers M[subscript 1] x M[subscript 2]p. 57
2.3.2 Ideal Decimationp. 58
2.3.3 Upsampling by Integers L[subscript 1] x L[subscript 2]p. 61
2.3.4 Ideal Interpolationp. 62
2.4 Sample-Rate Change-General Casep. 64
2.4.1 General Downsamplingp. 64
2.5 Conclusionsp. 66
2.6 Problemsp. 66
Referencesp. 70
3 Two-Dimensional Systems and Z-Transformsp. 71
3.1 Linear Spatial or 2-D Systemsp. 72
3.2 Z-Transformsp. 76
3.3 Regions of Convergencep. 79
3.3.1 More General Casep. 82
3.4 Some Z-Transform Propertiesp. 83
3.4.1 Linear Mapping of Variablesp. 84
3.4.2 Inverse Z-Transformp. 85
3.5 2-D Filter Stabilityp. 89
3.5.1 First-Quadrant Supportp. 91
3.5.2 Second-Quadrant Supportp. 91
3.5.3 Root Mapsp. 96
3.5.4 Stability Criteria for NSHP Support Filtersp. 98
3.6 Conclusionsp. 100
3.7 Problemsp. 101
Referencesp. 103
4 Two-Dimensional Discrete Transformsp. 105
4.1 Discrete Fourier Seriesp. 106
4.1.1 Properties of the DFS Transformp. 109
4.1.2 Periodic Convolutionp. 111
4.1.3 Shifting or Delay Propertyp. 112
4.2 Discrete Fourier Transformp. 113
4.2.1 DFT Propertiesp. 115
4.2.2 Relation of DFT to Fourier Transformp. 120
4.2.3 Effect of Sampling in Frequencyp. 121
4.2.4 Interpolating the DFTp. 122
4.3 2-D Discrete Cosine Transformp. 123
4.3.1 Review of 1-D DCTp. 125
4.3.2 Some 1-D DCT Propertiesp. 128
4.3.3 Symmetric Extension in 2-D DCTp. 131
4.4 Subband/Wavelet Transform (SWT)p. 132
4.4.1 Ideal Filter Casep. 132
4.4.2 1-D SWT with Finite-Order Filterp. 135
4.4.3 2-D SWT with FIR Filtersp. 137
4.4.4 Relation of SWT to DCTp. 138
4.4.5 Relation of SWT to Waveletsp. 138
4.5 Fast Transform Algorithmsp. 140
4.5.1 Fast DFT Algorithmp. 140
4.5.2 Fast DCT Methodsp. 141
4.6 Sectioned Convolution Methodsp. 142
4.7 Conclusionsp. 143
4.8 Problemsp. 144
Referencesp. 147
5 Two-Dimensional Filter Designp. 149
5.1 FIR Filter Designp. 150
5.1.1 FIR Window Function Designp. 150
5.1.2 Design by Transformation of 1-D Filterp. 156
5.1.3 Projection-Onto-Convex-Sets Methodp. 161
5.2 IIR Filter Designp. 165
5.2.1 2-D Recursive Filter Designp. 165
5.2.2 Fully Recursive Filter Designp. 171
5.3 Subband/Wavelet Filter Designp. 174
5.3.1 Wavelet (Biorthogonal) Filter Design Methodp. 178
5.4 Conclusionsp. 182
5.5 Problemsp. 182
Referencesp. 187
6 Introductory Image Processingp. 189
6.1 Light and Luminancep. 190
6.2 Still Image Visual Propertiesp. 194
6.2.1 Weber's Lawp. 195
6.2.2 Contrast Sensitivity Functionp. 196
6.2.3 Local Contrast Adaptationp. 198
6.3 Time-Variant Human Visual System Propertiesp. 199
6.4 Image Sensorsp. 201
6.4.1 Electronicp. 201
6.4.2 Filmp. 203
6.5 Image and Video Displayp. 204
6.5.1 Gammap. 205
6.6 Simple Image Processing Filtersp. 206
6.6.1 Box Filterp. 206
6.6.2 Gaussian Filterp. 207
6.6.3 Prewitt Operatorp. 208
6.6.4 Sobel Operatorp. 208
6.6.5 Laplacian Filterp. 209
6.7 Conclusionsp. 211
6.8 Problemsp. 211
Referencesp. 213
7 Image Estimation and Restorationp. 215
7.1 2-D Random Fieldsp. 216
7.1.1 Filtering a 2-D Random Fieldp. 218
7.1.2 Autoregressive Random Signal Modelsp. 222
7.2 Estimation for Random Fieldsp. 224
7.2.1 Infinite Observation Domainp. 225
7.3 2-D Recursive Estimationp. 229
7.3.1 1-D Kalman Filterp. 229
7.3.2 2-D Kalman Filteringp. 233
7.3.3 Reduced Update Kalman Filterp. 235
7.3.4 Approximate RUKFp. 236
7.3.5 Steady-State RUKFp. 236
7.3.6 LSI Estimation and Restoration Examples with RUKFp. 237
7.4 Inhomogeneous Gaussian Estimationp. 241
7.4.1 Inhomogeneous Estimation with RUKFp. 243
7.5 Estimation in the Subband/Wavelet Domainp. 244
7.6 Bayesian and MAP Estimationp. 248
7.6.1 Gauss Markov Image Modelsp. 249
7.6.2 Simulated Annealingp. 253
7.7 Image Identification and Restorationp. 257
7.7.1 Expectation-Maximization Algorithm Approachp. 258
7.7.2 EM Method in the Subband/Wavelet Domainp. 262
7.8 Color Image Processingp. 263
7.9 Conclusionsp. 263
7.10 Problemsp. 263
Referencesp. 266
8 Digital Image Compressionp. 269
8.1 Introductionp. 270
8.2 Transformationp. 272
8.2.1 DCTp. 272
8.2.2 SWTp. 274
8.2.3 DPCMp. 275
8.3 Quantizationp. 276
8.3.1 Uniform Quantizationp. 278
8.3.2 Optimal MSE Quantizationp. 278
8.3.3 Vector Quantizationp. 280
8.3.4 LBG Algorithm [7]p. 282
8.4 Entropy Codingp. 284
8.4.1 Huffman Codingp. 285
8.4.2 Arithmetic Codingp. 286
8.4.3 ECSQ and ECVQp. 287
8.5 DCT Coderp. 289
8.6 SWT Coderp. 292
8.6.1 Multiresolution SWT Codingp. 298
8.6.2 Nondyadic SWT Decompositionsp. 300
8.6.3 Fully Embedded SWT Codersp. 300
8.6.4 Embedded Zero-Tree Wavelet (EZW) Coderp. 301
8.6.5 Set Partitioning in Hierarchical Trees (SPIHT) Coderp. 304
8.6.6 Embedded Zero Block Coder (EZBC)p. 306
8.7 JPEG 2000p. 308
8.8 Color Image Codingp. 309
8.8.1 Scalable Coder Results Comparisonp. 311
8.9 Robustness Considerationsp. 311
8.10 Conclusionsp. 312
8.11 Problemsp. 312
Referencesp. 315
9 Three-Dimensional and Spatiotemporal Processingp. 317
9.1 3-D Signals and Systemsp. 318
9.1.1 Properties of 3-D Fourier Transformp. 320
9.1.2 3-D Filtersp. 321
9.2 3-D Sampling and Reconstructionp. 321
9.2.1 General 3-D Samplingp. 323
9.3 Spatiotemporal Signal Processingp. 325
9.3.1 Spatiotemporal Samplingp. 325
9.3.2 Spatiotemporal Filtersp. 326
9.3.3 Intraframe Filteringp. 328
9.3.4 Intraframe Wiener Filterp. 328
9.3.5 Interframe Filteringp. 330
9.3.6 Interframe Wiener Filterp. 331
9.4 Spatiotemporal Markov Modelsp. 332
9.4.1 Causal and Semicausal 3-D Field Sequencesp. 333
9.4.2 Reduced Update Spatiotemporal Kalman Filterp. 335
9.5 Conclusionsp. 338
9.6 Problemsp. 338
Referencesp. 339
10 Digital Video Processingp. 341
10.1 Interframe Processingp. 342
10.2 Motion Estimation and Motion Compensationp. 348
10.2.1 Block Matching Methodp. 350
10.2.2 Hierarchical Block Matchingp. 353
10.2.3 Overlapped Block Motion Compensationp. 354
10.2.4 Pel-Recursive Motion Estimationp. 355
10.2.5 Optical flow methodsp. 356
10.3 Motion-Compensated Filteringp. 358
10.3.1 MC-Wiener Filterp. 358
10.3.2 MC-Kalman Filterp. 360
10.3.3 Frame-Rate Conversionp. 363
10.3.4 Deinterlacingp. 365
10.4 Bayesian Method for Estimating Motionp. 371
10.4.1 Joint Motion Estimation and Segmentationp. 373
10.5 Conclusionsp. 377
10.6 Problemsp. 378
Referencesp. 379
10.7 Appendix: Digital Video Formatsp. 380
SIFp. 381
CIFp. 381
ITU 601 Digital TV (aka SMPTE D1 and D5)p. 381
ATSC Formatsp. 382
11 Digital Video Compressionp. 385
11.1 Intraframe Codingp. 387
11.1.1 M-JPEG Pseudo Algorithmp. 388
11.1.2 DV Codecp. 391
11.1.3 Intraframe SWT Codingp. 392
11.1.4 M-JPEG 2000p. 394
11.2 Interframe Codingp. 395
11.2.1 Generalizing 1-D DPCM to Interframe Codingp. 396
11.2.2 MC Spatiotemporal Predictionp. 397
11.3 Interframe Coding Standardsp. 398
11.3.1 MPEG 1p. 399
11.3.2 MPEG 2-"a Generic Standard"p. 401
11.3.3 The Missing MPEG 3-High-Definition Televisionp. 403
11.3.4 MPEG 4-Natural and Synthetic Combinedp. 403
11.3.5 Video Processing of MPEG-Coded Bitstreamsp. 404
11.3.6 H.263 Coder for Visual Conferencingp. 405
11.3.7 H.264/AVCp. 405
11.3.8 Video Coder Mode Controlp. 408
11.3.9 Network Adaptationp. 410
11.4 Interframe SWT Codersp. 410
11.4.1 Motion-Compensated SWT Hybrid Codingp. 412
11.4.2 3-D or Spatiotemporal Transform Codingp. 413
11.5 Scalable Video Codersp. 417
11.5.1 More on MCTFp. 420
11.5.2 Detection of Covered Pixelsp. 421
11.5.3 Bidirectional MCTFp. 423
11.6 Object-Based Video Codingp. 426
11.7 Comments on the Sensitivity of Compressed Videop. 428
11.8 Conclusionsp. 429
11.9 Problemsp. 430
Referencesp. 431
12 Video Transmission over Networksp. 435
12.1 Video on IP Networksp. 436
12.1.1 Overview of IP Networksp. 437
12.1.2 Error-Resilient Codingp. 440
12.1.3 Transport-Level Error Controlp. 442
12.1.4 Wireless Networksp. 443
12.1.5 Joint Source-Channel Codingp. 444
12.1.6 Error Concealmentp. 446
12.2 Robust SWT Video Coding (Bajic)p. 447
12.2.1 Dispersive Packetizationp. 447
12.2.2 Multiple Description FECp. 453
12.3 Error-Resilience Features of H.264/AVCp. 458
12.3.1 Syntaxp. 458
12.3.2 Data Partitioningp. 459
12.3.3 Slice Interleaving and Flexible Macroblock Orderingp. 459
12.3.4 Switching Framesp. 459
12.3.5 Reference Frame Selectionp. 461
12.3.6 Intrablock Refreshingp. 461
12.3.7 Error Concealment in H.264/AVCp. 461
12.4 Joint Source-Network Codingp. 463
12.4.1 Digital Item Adaptation (DIA) in MPEG 21p. 463
12.4.2 Fine-Grain Adaptive FECp. 464
12.5 Conclusionsp. 469
12.6 Problemsp. 469
Referencesp. 471
Indexp. 477
Go to:Top of Page