Skip to:Content
|
Bottom
Cover image for Thermal sciences : an introduction to thermodynamics, fluid mechanics, and heat transfer
Title:
Thermal sciences : an introduction to thermodynamics, fluid mechanics, and heat transfer
Personal Author:
Publication Information:
Belmont, Calif. : Thomson Brooks/Cole, 2004
Physical Description:
1 CD-ROM ; 12 cm
ISBN:
9780534385217
General Note:
Also available in printed version : TJ265 P674 2004

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010062806 CP 5223 Computer File Accompanies Open Access Book Compact Disc Accompanies Open Access Book
Searching...
Searching...
30000010122945 CP 5223 Computer File Accompanies Open Access Book Compact Disc Accompanies Open Access Book
Searching...

On Order

Summary

Summary

This book covers three key subjects: thermodynamics, fluid mechanics, and heat transfer. Taking a well-balanced approach, the authors clearly demonstrate the connections among the three interrelated subjects. Because of the consistent terminology and continuity, readers will find it easier to learn the three subjects. Instructors will also find it easier to refer to material covered earlier (e.g. thermodynamic laws as applied in fluid mechanics and heat transfer). The book has a design emphasis and provides the appropriate amount of material for non-mechanical engineering students. Addressing various levels of difficulty, the authors provide a wealth of examples and exercises, including synthesis problems and design problems.


Table of Contents

Introduction to Thermal Sciencesp. xvii
Part 1 Thermodynamicsp. 1
Chapter 1 Concepts, Definitions, and Basic Principlesp. 3
1.1 Introductionp. 4
1.2 Thermodynamic Systems and Control Volumesp. 4
1.3 Macroscopic Descriptionp. 6
1.4 Properties and State of a Systemp. 6
1.5 Equilibrium, Processes, and Cyclesp. 8
1.6 Unitsp. 9
1.7 Density, Specific Volume, and Specific Weightp. 12
1.8 Pressurep. 13
1.9 Temperaturep. 17
1.10 Energyp. 18
1.11 Summaryp. 20
Chapter 2 Properties of Pure Substancesp. 27
2.1 Introductionp. 28
2.2 The p-v-T Surfacep. 28
2.3 The Liquid-Vapor Regionp. 30
2.4 Properties of Steamp. 32
2.4.1 Steam Tablesp. 32
2.4.2 TK Solverp. 32
2.5 Equations of Statep. 36
2.6 Equations of State for a Nonideal Gasp. 39
2.7 Summaryp. 41
Chapter 3 Work and Heatp. 47
3.1 Introductionp. 48
3.2 Definition of Workp. 48
3.3 Quasi-equilibrium Work Due to a Moving Boundaryp. 49
3.4 Nonequilibrium Workp. 54
3.5 Other Work Modesp. 56
3.6 Heat Transferp. 58
3.6.1 Conductionp. 60
3.6.2 Convectionp. 63
3.6.3 Radiationp. 64
3.7 Summaryp. 67
Chapter 4 The First Law of Thermodynamicsp. 75
4.1 Introductionp. 76
4.2 The First Law Applied to a Cyclep. 76
4.3 The First Law Applied to a Processp. 78
4.4 Enthalpyp. 80
4.5 Latent Heatp. 82
4.6 Specific Heatsp. 83
4.7 The First Law Applied to Systemsp. 88
4.8 General Formulation for Control Volumesp. 93
4.9 The First Law Applied to Control Volumesp. 98
4.10 Transient Flowp. 106
4.11 The First Law with Heat Transfer Applicationsp. 109
4.12 Summaryp. 121
Chapter 5 The Second Law of Thermodynamicsp. 141
5.1 Introductionp. 142
5.2 Heat Engines, Heat Pumps, and Refrigeratorsp. 143
5.3 Statements of the Second Law of Thermodynamicsp. 144
5.4 Reversibilityp. 145
5.5 The Carnot Enginep. 147
5.6 Carnot Efficiencyp. 150
5.7 Entropyp. 153
5.8 Entropy for an Ideal Gas with Constant Specific Heatsp. 156
5.9 Entropy for an Ideal Gas with Variable Specific Heatsp. 158
5.10 Entropy Change for Substances Such As Steam, Solids, and Liquidsp. 160
5.11 The Inequality of Clausiusp. 163
5.12 Entropy Change for an Irreversible Processp. 164
5.13 The Second Law Applied to a Control Volumep. 167
5.14 Summaryp. 173
Chapter 6 Power and Refrigeration Vapor Cyclesp. 185
6.1 Introductionp. 186
6.2 The Rankine Cyclep. 186
6.3 A Possible Steam Carnot Cyclep. 189
6.4 Rankine Cycle Efficiencyp. 190
6.5 The Reheat Cyclep. 193
6.6 The Regenerative Cyclep. 195
6.7 Effect of Losses on Power Cycle Efficiencyp. 200
6.8 The Vapor-Refrigeration Cyclep. 202
6.9 The Heat Pumpp. 208
6.10 Summaryp. 210
Chapter 7 Power and Refrigeration Gas Cyclesp. 221
7.1 Introductionp. 222
7.2 The Air-Standard Cyclep. 222
7.3 The Carnot Cyclep. 224
7.4 The Otto Cyclep. 225
7.5 The Diesel Cyclep. 227
7.6 The Brayton Cyclep. 231
7.7 The Regenerative Brayton Cyclep. 235
7.8 The Combined Brayton-Rankine Cyclep. 237
7.9 The Gas-Refrigeration Cyclep. 239
7.10 Summaryp. 242
Chapter 8 Psychrometricsp. 253
8.1 Introductionp. 253
8.2 Gas-Vapor Mixturesp. 254
8.3 Adiabatic Saturation and Wet-Bulb Temperaturesp. 258
8.4 The Psychrometric Chartp. 260
8.5 Air-Conditioning Processesp. 261
8.6 Summaryp. 267
Chapter 9 Combustionp. 275
9.1 Combustion Equationsp. 275
9.2 Enthalpy of Formation, Enthalpy of Combustion, and the First Lawp. 280
9.3 Adiabatic Flame Temperaturep. 284
9.4 Summaryp. 288
Part 2 Fluid Mechanicsp. 293
Chapter 10 Basic Considerationsp. 295
10.1 Introductionp. 296
10.2 Dimensions, Units, and Physical Quantitiesp. 297
10.3 Continuum View of Gases and Liquidsp. 301
10.4 Pressure and Temperature Scalesp. 303
10.5 Fluid Propertiesp. 305
10.5.1 Density and Specific Weightp. 306
10.5.2 Viscosityp. 306
10.5.3 Compressibilityp. 310
10.5.4 Surface Tensionp. 311
10.5.5 Vapor Pressurep. 313
10.6 Conservation Lawsp. 315
10.7 Thermodynamic Properties and Relationshipsp. 315
10.7.1 Properties of an Ideal Gasp. 316
10.7.2 First Law of Thermodynamicsp. 316
10.7.3 Other Thermodynamic Quantitiesp. 318
10.8 Summaryp. 321
Chapter 11 Fluid Staticsp. 329
11.1 Introductionp. 330
11.2 Pressure at Pointp. 330
11.3 Pressure Variationp. 331
11.4 Fluids at Restp. 333
11.4.1 Pressures in Liquids at Restp. 333
11.4.2 Pressures in the Atmospherep. 334
11.4.3 Manometersp. 337
11.4.4 Forces on Plane Areasp. 339
11.4.5 Forces on Curved Surfacesp. 345
11.4.6 Buoyancyp. 348
11.5 Linearly Accelerating Containersp. 351
11.6 Rotating Containersp. 353
11.7 Summaryp. 356
Chapter 12 Introduction to Fluids in Motionp. 369
12.1 Introductionp. 370
12.2 Description of Fluid Motionp. 371
12.2.1 Lagrangian and Eulerian Disciplines of Motionp. 371
12.2.2 Pathlines, Streaklines, and Streamlinesp. 372
12.2.3 Accelerationp. 374
12.2.4 Angular Velocity and Vorticityp. 377
12.3 Classification of Fluid Flowsp. 382
12.3.1 One-, Two-, and Three-Dimensional Flowsp. 382
12.3.2 Viscous and Inviscid Flowsp. 383
12.3.3 Laminar and Turbulent Flowsp. 384
12.3.4 Incompressible and Compressible Flowsp. 388
12.4 The Bernoulli Equationp. 389
12.5 Summaryp. 399
Chapter 13 The Integral Forms of the Fundamental Lawsp. 409
13.1 Introductionp. 410
13.2 The Three Basic Lawsp. 411
13.3 System-to-Control-Volume Transformationp. 414
13.3.1 Simplifications of the System-to-Control-Volume Transformationp. 417
13.4 Conservation of Massp. 418
13.5 Energy Equationp. 425
13.5.1 Work-Rate Termp. 426
13.5.2 General Energy Equationp. 427
13.5.3 Steady Uniform Flowp. 429
13.5.4 Steady Nonuniform Flowp. 432
13.6 Momentum Equationp. 436
13.6.1 General Momentum Equationp. 436
13.6.2 Steady Uniform Flowp. 437
13.6.3 Momentum Equation Applied to Deflectorsp. 444
13.6.4 Steady Nonuniform Flowp. 451
13.7 Summaryp. 452
Chapter 14 Dimensional Analysis and Similitudep. 471
14.1 Introductionp. 472
14.2 Dimensional Analysisp. 473
14.2.1 Motivationp. 473
14.2.2 Review of Dimensionsp. 475
14.2.3 Buckingham [pi]-Theoremp. 476
14.2.4 Common Dimensionless Parametersp. 481
14.3 Similitudep. 483
14.3.1 General Informationp. 483
14.3.2 Confined Flowsp. 485
14.3.3 Free-Surface Flowsp. 485
14.3.4 High-Reynolds-Number Flowsp. 488
14.3.5 Compressible Flowsp. 490
14.3.6 Periodic Flowsp. 491
14.4 Summaryp. 492
Chapter 15 Internal Flowsp. 501
15.1 Introductionp. 502
15.2 Entrance Flow and Developed Flowp. 502
15.3 Laminar Flow in a Pipep. 505
15.4 Laminar Flow between Parallel Platesp. 510
15.5 Laminar Flow between Rotating Cylindersp. 516
15.6 Turbulent Flow in a Pipep. 520
15.6.1 Differential Equationp. 522
15.6.2 Velocity Profilep. 526
15.6.3 Losses in Developed Pipe Flowp. 532
15.6.4 Losses in Noncircular Conduitsp. 539
15.6.5 Minor Losses in Pipe Flowp. 540
15.6.6 Hydraulic and Energy Grade Linesp. 545
15.6.7 Simple Pipe System with a Pumpp. 548
15.7 Uniform Turbulent Flow in Open Channelsp. 550
15.8 Summaryp. 554
Chapter 16 External Flowsp. 571
16.1 Introductionp. 572
16.2 Separationp. 576
16.3 Flow around Immersed Bodiesp. 579
16.3.1 Drag Coefficientsp. 579
16.3.2 Vortex Sheddingp. 585
16.3.3 Streamliningp. 588
16.3.4 Cavitationp. 589
16.3.5 Added Massp. 591
16.4 Lift and Drag on Airfoilsp. 593
16.5 Potential Flow Theoryp. 598
16.5.1 Basic Flow Equationsp. 598
16.5.2 Simple Solutionsp. 602
16.5.3 Superpositionp. 605
16.6 Boundary Layer Theoryp. 608
16.6.1 General Backgroundp. 608
16.6.2 Von Karman Integral Equationp. 611
16.6.3 Approximate Solution to the Laminar Boundary Layerp. 613
16.6.4 Turbulent Boundary Layer: Power-Law Formp. 617
16.6.5 Turbulent Boundary Layer: Empirical Formp. 620
16.6.6 Convection Heat Transferp. 626
16.6.7 Pressure Gradient Effectsp. 629
16.7 Summaryp. 632
Chapter 17 Compressible Flowp. 647
17.1 Introductionp. 648
17.2 Speed of Sound and the Mach Numberp. 650
17.3 Isentropic Nozzle Flowp. 653
17.4 Normal Shock Wavep. 663
17.5 Shock Waves in Converging-Diverging Nozzlesp. 670
17.6 Oblique Shock Wavesp. 674
17.7 Isentropic Expansion Wavesp. 679
17.8 Summaryp. 682
Appendixp. 689
A. Units and Conversionsp. 689
B. Material Propertiesp. 691
C. Thermodynamic Properties of Water (Steam Tables)p. 703
D. Thermodynamic Properties of Freon 12p. 717
E. Thermodynamic Properties of Ammoniap. 728
F. Ideal-Gas Tablesp. 733
G. Psychrometric Chartsp. 745
H. Compressibility Chartp. 747
I. Compressible-Flow Tables for Airp. 749
J. Properties of Areas and Volumesp. 753
K. Vector Relationsp. 755
Answers to Selected Problemsp. 757
Indexp. 767
Go to:Top of Page