Skip to:Content
|
Bottom
Cover image for Plasticity
Title:
Plasticity
Publication Information:
River Edge, N.J. : World Scientific, 2004
ISBN:
9789812387462
General Note:
Accompanies text entitled : Theory of cortical plasticity (QP363.3 T53 2004)
Added Author:

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010071437 CP 5409 Computer File Accompanies Open Access Book Compact Disc Accompanies Open Access Book
Searching...

On Order

Summary

Summary

In Theory of Cortical Plasticity, Nobel Laureate Leon Cooper and his collaborators present a systematic development of the Bienenstock, Cooper and Munro (BCM) theory of synaptic plasticity, and discuss experiments that test both its assumptions and consequences. This insightful book provides an elegant analysis of theoretical structure in neuroscience research, and elucidates the role BCM theory has played in guiding research leading to our present understanding of the mechanisms underlying cortical plasticity.


Table of Contents

Prefacep. vii
Acknowledgementsp. xi
The Software Package, Plasticityp. xix
Notationp. xxi
Common Acronyms and Abbreviationsp. xxiii
1. Introductionp. 1
1.1 Visual Cortex Plasticityp. 3
1.2 Theoretical backgroundp. 5
1.3 Comparison of Theory and Experimentp. 7
1.4 Cellular basis for the postulates of the BCM theoryp. 9
1.5 A model of inputs to visual cortex cellsp. 11
2. Single Cell Theoryp. 17
2.1 Introductionp. 17
2.2 Definitions and Notationp. 18
2.3 BCM synaptic modificationp. 21
2.4 One Dimensional Analysisp. 23
2.4.1 Fixed thresholdp. 23
2.4.2 Instantaneously sliding thresholdp. 23
2.4.3 Instantaneously sliding threshold with a Probabilistic Inputp. 24
2.4.4 Summary of the One Dimensional Casep. 25
2.5 The Nonlinear Sliding Thresholdp. 25
2.6 Analysis of a two dimensional neuronp. 27
2.6.1 Two input environmentp. 28
2.6.2 Stability analysisp. 29
Selective Critical Pointsp. 29
Non-selective critical pointsp. 30
2.6.3 Single input environmentp. 32
2.6.4 Many input environmentp. 32
2.7 Some Experimental Consequencesp. 33
2.7.1 Normal Rearingp. 33
2.7.2 Monocular deprivationp. 34
2A. Stability of BCM with a Weight Decay Term, in a Linearly Independent Environmentp. 45
2A.1 Initial Fixed Pointsp. 45
2A.1.1 Consistencyp. 46
2A.2 Stabilityp. 46
2A.2.1 Consistencyp. 49
2A.2.2 Consequencesp. 49
3. Objective Function Formulationp. 51
3.1 Introductionp. 51
3.2 Formulation of the BCM Theory Using an Objective Functionp. 51
3.2.1 Single Neuronp. 52
3.2.2 Extension to a Nonlinear Neuronp. 55
3.2.3 Extension to a Network with Feed-Forward Inhibitionp. 56
3.3 The BCM feature extraction and codingp. 58
3.3.1 BCM and suspicious coincidence detectionp. 58
3.4 Information Theoretic Considerationsp. 60
3.4.1 Information theory and synaptic modification rulesp. 60
3.4.2 Information theory and early visual processingp. 62
3.4.3 Information properties of Principal Componentsp. 64
3.5 Extraction of Optimal Unsupervised Featuresp. 65
3.5.1 Projection Pursuit and Deviation from Gaussian Distributionsp. 66
3.5.2 Skewnessp. 68
(a) Skewness 1p. 68
(b) Skewness 2p. 69
3.5.3 Kurtosisp. 69
(a) Kurtosis 1p. 69
(b) Kurtosis 2p. 69
3.5.4 Quadratic BCMp. 70
3.5.5 Constrained BCM measurep. 70
3.5.6 Independent Components and Receptive Fieldsp. 71
3.5.7 Kurtosis and ICAp. 73
3.5.8 Friedman's distance from uniform measurep. 73
3.5.9 Entropyp. 74
3.5.10 The concept of minimum mutual information between neuronsp. 76
3.5.11 Some Related Statistical and Computational Issues in BCMp. 77
3.6 Analysis of the Fixed Points of BCM in High Dimensional Spacep. 78
3.6.1 n linearly independent inputsp. 79
Stability of the solutionp. 80
3.6.2 Noise with no Patterned Inputp. 82
Noise with Zero Meanp. 83
Noise with Positive Meanp. 83
3.6.3 Patterned Input with Noisep. 84
3.7 Application to Various Rearing Conditionsp. 85
3.7.1 Normal Rearing(NR)p. 85
3.7.2 Monocular Deprivation (MD)p. 85
3.7.3 Binocular Deprivation (BD)p. 86
3.7.4 Reverse Suture (RS)p. 86
3.7.5 Strabismusp. 87
3.8 Discussionp. 87
3A. Convergence of the Solution of the Random Differential Equationsp. 89
3A.1 Convergence of the Deterministic Equationp. 89
3A.2 Convergence of the Random Equationp. 90
3B. Analysis and Comparison of BCM and Kurtosis in Extended Distributionsp. 93
3B.1 Two Dimensionsp. 95
3B.2 Monocular Deprivationp. 98
3B.2.1 Kurtosisp. 99
3B.2.2 BCMp. 101
3B.3 Binocular Deprivationp. 102
3B.3.1 Gaussian Noisep. 102
3B.3.2 Kurtosisp. 103
3B.3.3 BCMp. 103
3B.4 Reverse Suturep. 105
3B.5 Strabismusp. 106
3B.5.1 Kurtosisp. 107
3B.5.2 BCMp. 108
3C. Statistical Theoremsp. 109
4. Cortical Network Theoryp. 111
4.1 Introductionp. 111
4.2 Mean Field Theoryp. 112
4.2.1 Position and Stability of Fixed Points of LGN-Cortical Synapses in the Mean Field Networkp. 117
4.2.2 Comparison of Linear Feed-Forward with Lateral Inhibition Network: Mean Field Approximationp. 119
4.3 Matrix-based analysis of networks of interacting and non-linear BCM neuronsp. 121
4.4 Discussionp. 122
4A. Asymptotic Behavior of Mean Field Equations with Time Dependent Mean Fieldp. 125
5. Review and Analysis of Second Order Learning Rulesp. 127
5.1 Introductionp. 127
5.2 Hebb's rule and its derivativesp. 128
5.2.1 Stabilized Hebbian rulep. 131
5.2.2 Finding multiple principal componentsp. 133
5.2.3 Fixed points of saturating Hebb rulesp. 134
5.2.4 Why are Principal Components not Localp. 136
5.2.5 Summaryp. 137
5.3 Orientation Selectivityp. 137
5.3.1 An exactly soluble 1D Modelp. 138
5.3.2 Radially symmetric models in 2Dp. 142
5.3.3 2D correlational Modelsp. 142
5.3.4 Analysis of Linsker's Modelp. 144
5.3.5 Formation of Receptive Fields in a Natural Image Environmentp. 148
(a) The visual environmentp. 148
(b) PCA simulations with natural imagesp. 149
(c) Analysis of receptive fields formed in a Radially Symmetric Environmentp. 150
(d) Non symmetric environmentp. 153
5.3.6 Summaryp. 154
5.4 Ocular Dominancep. 155
5.4.1 Ocular Dominance in Correlational Low-Dimensional Modelsp. 155
5.4.2 Misaligned inputs to cellp. 159
5.5 Combined Orientation Selectivity and Ocular Dominancep. 160
5.5.1 The two-eye 1D soluble Modelp. 160
5.5.2 A Correlational Model of Ocular Dominance and Orientation Selectivityp. 161
5.5.3 Four Channel Modelsp. 165
5.5.4 Mixing Principal Componentsp. 166
5.5.5 Local External Symmetry Breakingp. 170
5.5.6 A two eye model with Natural Imagesp. 171
5.6 Deprivation Experimentsp. 172
5.6.1 A Simple Correlational Model using Exact PCA Dynamicsp. 172
(a) Normal Rearing (NR)p. 173
(b) Monocular Deprivation (MD)p. 174
(c) Reverse Suture (RS)p. 175
(d) Binocular Deprivation (BD)p. 175
5.6.2 Simulation results with natural imagesp. 176
5.7 Discussionp. 176
5A. Representing the correlation matrix in a Bessel function Basep. 185
5A.1 The correlation function for the pre-processed imagesp. 187
5B. Properties of Correlation Functions And How to Make Good Onesp. 189
5C. The Parity Transform: Symmetry properties of the eigenstates of the two eye problemp. 191
6. Receptive field selectivity in a natural image environmentp. 195
6.1 Modeling Orientation Selectivityp. 195
6.1.1 The input environmentp. 196
6.1.2 Sufficient conditions for obtaining orientation selectivityp. 196
6.1.3 Dependence on RF size and localizationp. 197
6.1.4 Spatial frequency of receptive fieldsp. 197
6.2 Orientation selectivity with statistically defined learning rulesp. 198
6.3 What drives orientation selectivityp. 200
6.4 ON/OFF inputsp. 201
6.5 Direction Selectivityp. 204
6.5.1 Strobe Rearingp. 206
6.6 Conclusionsp. 207
6A. Technical Remarks Concerning Simulations of Selectivityp. 221
6A.1 Testing Orientation and Directionp. 221
6A.1.1 Orientation Selectivityp. 221
6A.1.2 Direction Selectivityp. 222
6A.2 Spatial frequency of receptive fieldsp. 223
6A.3 Displaying the Weightsp. 224
6A.4 Different Forms of BCM Modificationp. 224
6A.4.1 Evaluation of the Objective Function using Newton's Methodp. 225
7. Ocular dominance in normal and deprived cortexp. 229
7.1 Development of normal ocular dominancep. 229
7.2 Deprivation of normal binocular inputsp. 233
7.2.1 Binocular Deprivationp. 234
7.2.2 Monocular Deprivationp. 234
7.2.3 Recovery from Monocular Deprivationp. 235
7.2.4 Strabismusp. 236
7.2.5 Robustness to Parametersp. 237
7.3 Time Course of Deprivation: Simulation Time Versus Real Timep. 239
7.4 Dependence of deprivation on spontaneous activity or noisep. 242
7.5 Conclusionsp. 243
8. Networks of interacting BCM Neuronsp. 253
8.1 Simplified Environmentsp. 253
8.2 Natural Image Environmentp. 256
8.2.1 Orientation Selectivityp. 256
8.2.2 Orientation Selectivity and Ocular Dominancep. 258
8.2.3 Orientation and Direction Selectivityp. 259
8.3 Structured lateral connectivityp. 261
8.4 Conclusionsp. 267
9. Experimental evidence for the assumptions and consequences of the BCM theoryp. 271
9.1 Evidence confirming the postulates of the BCM theoryp. 271
9.1.1 The shape of the plasticity curvep. 272
Rate based inductionp. 272
Pairing based inductionp. 274
Possible physiological bases of synaptic plasticityp. 275
9.1.2 The sliding modification thresholdp. 276
9.2 Evidence confirming the consequences of the BCM theoryp. 278
9.3 Conclusionp. 282
Bibliographyp. 291
Go to:Top of Page