Skip to:Content
|
Bottom
Cover image for Space-time codes and MIMO systems
Title:
Space-time codes and MIMO systems
Personal Author:
Series:
Artech House universal personal communications series
Publication Information:
Norwood, MA : Artech House, 2004
Physical Description:
1 CD-ROM ; 12 cm.
ISBN:
9781580538657
General Note:
Accompanies text of the same title : TK5103.4877 J36 2004

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010076202 CP 6613 Computer File Accompanies Open Access Book Compact Disc Accompanies Open Access Book
Searching...

On Order

Summary

Summary

MIMO (multiple input and multiple output) is the technology that is advancing the wireless industry from Third Generation (3G) to cutting edge Fourth Generation (4G) systems, and this book is the professional engineer's essential guide to MIMO. It takes readers step-by-step from the basics of MIMO through various coding techniques to such advance topics as multiplexing and packet transmission. Practical examples are emphasized and arcane math is kept to a minimum, so field engineers can quickly and thoroughly understand the essentials of MIMO. The book takes a systems view of MIMO technology to help engineers quickly analyze the benefits and drawbacks of any MIMO systems. Professionals find detailed coverage of a critical up-and-coming topic not covered in any other book -- direct interfacing of a CDMA system, such as IS-95 with an OFDM system. This approach helps engineers design systems that can meet the ever-increasing need for higher throughput wireless communication. CD-ROM Included Features software to simulate wireless systems as well as tutorial software.


Author Notes

Mohinder Jankiraman is a Dallas, Texas-based technology consultant with more than 20 years of professional engineering experience in wireless communications


Table of Contents

Prefacep. xiii
Acknowledgmentsp. xv
Chapter 1 Introductionp. 1
1.1 The Crowded Spectrump. 1
1.2 Need for High Data Ratesp. 1
1.3 Multiple-Input Multiple-Output Systemsp. 6
1.4 Internet Protocolp. 8
1.4.1 Routing Operationsp. 8
1.4.2 The Transmission Control Protocolp. 8
1.5 Wireless Internet Protocolp. 11
Referencesp. 12
Chapter 2 The MIMO Wireless Channelp. 15
2.1 Introductionp. 15
2.2 Preliminariesp. 15
2.2.1 Multiantenna Systemsp. 15
2.2.2 Array Gainp. 15
2.2.3 Diversity Gainp. 16
2.2.4 Data Pipesp. 18
2.2.5 Spatial Multiplexingp. 19
2.2.6 Additional Termsp. 19
2.3 MIMO System Modelp. 20
2.4 MIMO System Capacityp. 22
2.5 Channel Unknown to the Transmitterp. 23
2.6 Channel Known to the Transmitterp. 24
2.6.1 Water-Pouring Principlep. 24
2.6.2 Capacity When Channel Is Known to the Transmitterp. 26
2.7 Deterministic Channelsp. 27
2.7.1 SIMO Channel Capacityp. 27
2.7.2 MISO Channel Capacityp. 28
2.8 Random Channelsp. 29
2.8.1 Ergodic Capacityp. 30
2.8.2 Outage Capacityp. 31
2.9 Influence of Fading Correlation on MIMO Capacityp. 32
2.10 Influence of LOS on MIMO Capacityp. 35
2.11 Influence of XPD on MIMO Capacityp. 38
2.12 Keyhole Effect: Degenerate Channelsp. 39
2.13 Capacity of Frequency Selective MIMO Channelsp. 42
2.13.1 Channel Unknown to the Transmitterp. 43
2.13.2 Channel Known to the Transmitterp. 44
Referencesp. 45
Chapter 3 Channel Propagation, Fading, and Link Budget Analysisp. 47
3.1 Introductionp. 47
3.2 Radio Wave Propagationp. 47
3.2.1 Reflectionp. 47
3.2.2 Diffractionp. 48
3.2.3 Scatteringp. 48
3.3 Large-Scale Fading or Macroscopic Fadingp. 50
3.3.1 Free-Space Propagation Modelp. 50
3.3.2 Outdoor Propagation Modelsp. 53
3.4 Small-Scale Fadingp. 57
3.4.1 Microscopic Fadingp. 58
3.5 Microscopic Fading Measurementsp. 65
3.5.1 Direct Pulse Measurementsp. 66
3.5.2 Spread-Spectrum Sliding Correlator Channel Soundingp. 66
3.5.3 Frequency Domain Channel Soundingp. 68
3.6 Antenna Diversityp. 69
3.6.1 Diversity Combining Methodsp. 69
3.6.2 MIMO Channelsp. 73
Referencesp. 73
Chapter 4 Space-Time Block Codingp. 75
4.1 Introductionp. 75
4.2 Delay Diversity Schemep. 75
4.3 Alamouti Space-Time Codep. 76
4.3.1 Maximum Likelihood Decodingp. 78
4.3.2 Maximum Ratio Combiningp. 78
4.3.3 Transmit Diversityp. 79
4.3.4 Summary of Alamouti's Schemep. 80
4.4 Space-Time Block Codesp. 80
4.4.1 STBC for Real Signal Constellationsp. 82
4.4.2 STBC for Complex Signal Constellationsp. 84
4.5 Decoding of STBCp. 86
4.6 Simulation Resultsp. 88
4.7 Imperfect Channel Estimation: A Performance Analysisp. 92
4.7.1 Least Squares Estimationp. 93
4.7.2 Minimum Mean Squares Estimationp. 94
4.7.3 Channel Estimation Algorithm Using the FFT Methodp. 95
4.8 Effect of Antenna Correlation on Performancep. 97
4.9 Dominant Eigenmode Transmissionp. 98
4.10 Capacity of OSTBC Channelsp. 100
4.11 Simulation Exercisesp. 101
Referencesp. 101
Chapter 5 Space-Time Trellis Codesp. 103
5.1 Introductionp. 103
5.2 Space-Time Coded Systemsp. 103
5.3 Space-Time Code Word Design Criteriap. 105
5.4 Design of Space-Time Trellis Codes on Slow Fading Channelsp. 107
5.4.1 Error Probability on Slow Fading Channelsp. 107
5.4.2 Design Criteria for Slow Rayleigh Fading STTCsp. 109
5.4.3 Encoding/Decoding of STTCs for Quasi-Static Flat Fading Channelsp. 113
5.4.4 Code Construction for Quasi-Static Flat Fading Channelsp. 116
5.4.5 Example Using 4-PSKp. 117
5.5 Design of Space-Time Trellis Codes on Fast Fading Channelsp. 121
5.5.1 Error Probability on Fast Fading Channelsp. 121
5.6 Performance Analysis in a Slow Fading Channelp. 126
5.7 Performance Analysis in a Fast Fading Channelp. 128
5.8 The Effect of Imperfect Channel Estimation on Code Performancep. 128
5.9 Effect of Antenna Correlation on Performancep. 130
5.10 Delay Diversity as an STTCp. 130
5.11 Comparison of STBC and STTCp. 131
5.12 Simulation Exercisesp. 134
Referencesp. 135
Chapter 6 Layered Space-Time Codesp. 137
6.1 Introductionp. 137
6.2 LST Transmitters: Types of Encodingp. 137
6.2.1 Horizontal Encodingp. 137
6.2.2 Vertical Encodingp. 144
6.3 Layered Space-Time Coding: Design Criteriap. 148
6.3.1 Performance Analysis of an HLST Systemp. 149
6.3.2 Performance Analysis of a DLST Systemp. 152
6.3.3 Code Design Criteriap. 154
6.4 LST Receiversp. 157
6.4.1 ML Receiverp. 157
6.4.2 Zero-Forcing Receiverp. 157
6.4.3 MMSE Receiverp. 158
6.4.4 Successive Cancellation Receiverp. 158
6.4.5 Zero Forcing V-BLAST Receiverp. 159
6.4.6 MMSE V-BLAST Receiverp. 159
6.4.7 Simulation Resultsp. 160
6.4.8 Receivers for HLST and DLST Systemsp. 161
6.5 Iterative Receiversp. 161
6.6 The Effect of Imperfect Channel Estimation on Code Performancep. 162
6.7 Effect of Antenna Correlation on Performancep. 162
6.8 Diversity Performance of SM Receiversp. 162
6.9 Summaryp. 163
6.10 Simulation Exercisesp. 164
Referencesp. 164
Chapter 7 Orthogonal Frequency Division Multiplexingp. 165
7.1 Introductionp. 165
7.2 Basic Principlesp. 165
7.2.1 Data Transmission over Multipath Channelsp. 165
7.2.2 Single Carrier Approachp. 165
7.2.3 Multicarrier Approachp. 167
7.3 OFDMp. 167
7.4 OFDM Generationp. 168
7.5 Synchronization Issuesp. 171
7.5.1 Symbol Time and Frequency Carrier Offset Derivationp. 171
7.6 Survey of Synchronization Techniquesp. 178
7.6.1 Symbol Synchronizationp. 178
7.7 Frequency Offset Estimationp. 189
7.8 Carrier Synchronizationp. 190
7.8.1 Pilotsp. 191
7.8.2 Cyclic Prefixp. 191
7.9 Sampling-Frequency Synchronizationp. 191
7.10 Performance Analysis of Synchronization Techniquesp. 192
7.10.1 Symbol Synchronizationp. 192
7.11 ML Estimation of Timing and Frequency Offsetp. 193
7.11.1 The Correlation Algorithm Using the Guard Intervalp. 194
7.12 Carrier Synchronizationp. 195
7.12.1 Pilotsp. 195
7.13 Sampling-Frequency Synchronizationp. 198
7.14 Observationsp. 198
7.15 Suggested Solution to the Synchronization Problemp. 199
7.16 Channel Estimationp. 200
7.17 Peak to Average Power Ratiop. 200
7.17.1 Schemes for Reduction of PAPRp. 201
7.18 Application to Packet Transmission Systemsp. 206
7.19 Conclusionsp. 206
7.20 Simulation Exercisesp. 207
Referencesp. 207
Chapter 8 IEEE 802.11a Packet Transmission Systemp. 209
8.1 Introductionp. 209
8.2 Backgroundp. 210
8.3 Wireless LAN Topologyp. 210
8.4 IEEE 802.11 Standard Familyp. 211
8.4.1 802.11p. 211
8.4.2 802.11bp. 211
8.4.3 802.11ap. 212
8.4.4 Othersp. 212
8.5 WLAN Protocol Layer Architecturep. 212
8.6 Medium Access Controlp. 213
8.6.1 IEEE 802.11 MAC Layerp. 213
8.7 Physical Layerp. 215
8.7.1 Frequency Hopping Spread Spectrump. 216
8.7.2 Direct Sequence Spread Spectrump. 216
8.7.3 Orthogonal Frequency Division Multiplexing and 5-GHz WLAN Physical Layerp. 217
8.8 Synchronization and Packet Detection Algorithmsp. 224
8.8.1 Packet Detectionp. 224
8.8.2 Symbol Timingp. 226
8.8.3 Sampling Clock Frequency Errorp. 227
8.8.4 Carrier Frequency Synchronizationp. 229
8.8.5 Carrier Phase Trackingp. 232
8.9 Channel Estimationp. 233
Referencesp. 234
Chapter 9 Space-Time Coding for Broadband Channelp. 237
9.1 Introductionp. 237
9.2 Performance of Space-Time Coding on Frequency-Selective Fading Channelsp. 237
9.3 Space-Time Coding in Wideband OFDM Systemsp. 239
9.4 Capacity of MIMO-OFDM Systemsp. 240
9.4.1 Assumptionsp. 242
9.4.2 Mutual Informationp. 244
9.4.3 Ergodic Capacity and Outage Capacityp. 246
9.4.4 Influence of Channel and System Parameters on Capacityp. 247
9.4.5 Simulationsp. 251
9.4.6 Summaryp. 254
9.5 Performance Analysis of MIMO-OFDM Systemsp. 254
9.5.1 Analysisp. 260
9.6 CDMA-OFDM-MIMOp. 260
9.6.1 Introductionp. 260
9.6.2 Overall System Conceptp. 262
9.6.3 Comparison with MC-CDMAp. 267
9.6.4 Interfacing with MIMOp. 272
9.7 Simulation Exercisesp. 272
Referencesp. 272
Chapter 10 The Way Aheadp. 275
10.1 Introductionp. 275
10.2 MIMO Multiuserp. 275
10.2.1 Capacity in the Uplinkp. 276
10.3 Linear Dispersion Codingp. 280
10.3.1 Hassibi and Hochwald Methodp. 281
10.3.2 Method of Heath and Paulrajp. 288
10.4 Conclusionp. 292
Referencesp. 292
Appendix A Wideband Simulator: Description and Explanatory Notesp. 295
A.1 Introductionp. 295
A.2 Files Listingp. 295
A.3 SISO Modep. 297
A.4 SIMO Modep. 300
A.5 MISO/MIMO Modep. 301
A.6 V-BLAST Modep. 302
Referencep. 303
Appendix B Narrowband Simulatorp. 305
B.1 Introductionp. 305
B.2 Descriptionp. 305
List of Acronymsp. 307
List of Symbolsp. 311
About the Authorp. 313
Indexp. 315
Go to:Top of Page