Skip to:Content
|
Bottom
Cover image for Electromagnetic compatibility engineering
Title:
Electromagnetic compatibility engineering
Personal Author:
Publication Information:
Hoboken, NJ : John Wiley & Sons, c2009
Physical Description:
xxv, 843 p. : ill. ; 24 cm.
ISBN:
9780470189306
General Note:
Earlier ed. published under title: Noise reduction techniques in electronic systems, c1988

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010235668 TK7867.5 O87 2009 Open Access Book Book
Searching...

On Order

Summary

Summary

Praise for Noise Reduction Techniques IN electronic systems

"Henry Ott has literally 'written the book' on the subject of EMC. . . . He not only knows the subject, but has the rare ability to communicate that knowledge to others."
-- EE Times

Electromagnetic Compatibility Engineering is a completely revised, expanded, and updated version of Henry Ott's popular book Noise Reduction Techniques in Electronic Systems. It reflects the most recent developments in the field of electromagnetic compatibility (EMC) and noise reduction¿and their practical applications to the design of analog and digital circuits in computer, home entertainment, medical, telecom, industrial process control, and automotive equipment, as well as military and aerospace systems.

While maintaining and updating the core information--such as cabling, grounding, filtering, shielding, digital circuit grounding and layout, and ESD--that made the previous book such a wide success, this new book includes additional coverage of:

Equipment/systems grounding

Switching power supplies and variable-speed motor drives

Digital circuit power distribution and decoupling

PCB layout and stack-up

Mixed-signal PCB layout

RF and transient immunity

Power line disturbances

Precompliance EMC measurements

New appendices on dipole antennae, the theory of partial inductance, and the ten most common EMC problems

The concepts presented are applicable to analog and digital circuits operating from below audio frequencies to those in the GHz range. Throughout the book, an emphasis is placed on cost-effective EMC designs, with the amount and complexity of mathematics kept to the strictest minimum.

Complemented with over 250 problems with answers, Electromagnetic Compatibility Engineering equips readers with the knowledge needed to design electronic equipment that is compatible with the electromagnetic environment and compliant with national and international EMC regulations. It is an essential resource for practicing engineers who face EMC and regulatory compliance issues and an ideal textbook for EE courses at the advanced undergraduate and graduate levels.


Author Notes

Henry W. Ott is President and Principal Consultant of Henry Ott Consultants, an EMC/ESD training and consulting organization located in Livingston, New Jersey. Mr. Ott is considered by many to be the nation's leading EMC educator.


Table of Contents

Prefacep. xxiii
Part 1 EMC Theoryp. 1
1 Electromagnetic Compatibilityp. 3
1.1 Introductionp. 3
1.2 Noise and Interferencep. 3
1.3 Designing for Electromagnetic Compatibilityp. 4
1.4 Engineering Documentation and EMCp. 6
1.5 United States' EMC Regulationsp. 6
1.5.1 FCC Regulationsp. 6
1.5.2 FCC Part 15, Subpart Bp. 8
1.5.3 Emissionsp. 11
1.5.4 Administrative Proceduresp. 14
1.5.5 Susceptibilityp. 17
1.5.6 Medical Equipmentp. 17
1.5.7 Telecomp. 18
1.5.8 Automotivep. 19
1.6 Canadian EMC Requirementsp. 19
1.7 European Union's EMC Requirementsp. 20
1.7.1 Emission Requirementsp. 20
1.7.2 Harmonics and Flickerp. 22
1.7.3 Immunity Requirementsp. 23
1.7.4 Directives and Standardsp. 23
1.8 International Harmonizationp. 26
1.9 Military Standards

p. 27

1.10 Avionics

p. 28

1.11 The Regulatory Processp. 30
1.12 Typical Noise Pathp. 30
1.13 Methods of Noise Couplingp. 31
1.13.1 Conductively Coupled Noisep. 31
1.13.2 Common Impedance Couplingp. 32
1.13.3 Electric and Magnetic Field Couplingp. 33
1.14 Miscellaneous Noise Sourcesp. 33
1.14.1 Galvanic Actionp. 33
1.14.2 Electrolytic Actionp. 35
1.14.3 Triboelectric Effectp. 35
1.14.4 Conductor Motionp. 36
1.15 Use of Network Theoryp. 36
Summaryp. 38
Problemsp. 39
Referencesp. 41
Further Readingp. 42
2 Cablingp. 44
2.1 Capacitive Couplingp. 45
2.2 Effect of Shield on Capacitive Couplingp. 48
2.3 Inductive Couplingp. 52
2.4 Mutual Inductance Calculationsp. 54
2.5 Effect of Shield on Magnetic Couplingp. 56
2.5.1 Magnetic Coupling Between Shield and Inner Conductorp. 58
2.5.2 Magnetic Coupling-Open Wire to Shielded Conductorp. 61
2.6 Shielding to Prevent Magnetic Radiationp. 64
2.7 Shielding a Receptor Against Magnetic Fieldsp. 67
2.8 Common Impedance Shield Couplingp. 69
2.9 Experimental Data

p. 70

2.10 Example of Selective Shielding

p. 74

2.11 Shield Transfer Impedancep. 75
2.12 Coaxial Cable Versus Twisted Pairp. 75
2.13 Braided Shieldsp. 79
2.14 Spiral Shieldsp. 81
2.15 Shield Terminationsp. 84
2.15.1 Pigtailsp. 84
2.15.2 Grounding of Cable Shieldsp. 88
2.16 Ribbon Cablesp. 94
2.17 Electrically Long Cablesp. 96
Summaryp. 96
Problemsp. 98
Referencesp. 103
Further Readingp. 104
3 Groundingp. 106
3.1 AC Power Distribution and Safety Groundsp. 107
3.1.1 Service Entrancep. 108
3.1.2 Branch Circuitsp. 109
3.1.3 Noise Controlp. 111
3.1.4 Earth Groundsp. 114
3.1.5 Isolated Groundsp. 116
3.1.6 Separately Derived Systemsp. 118
3.1.7 Grounding Mythsp. 119
3.2 Signal Groundsp. 120
3.2.1 Single-Point Ground Systemsp. 124
3.2.2 Multipoint Ground Systemsp. 126
3.2.3 Common Impedance Couplingp. 128
3.2.4 Hybrid Groundsp. 130
3.2.5 Chassis Groundsp. 131
3.3 Equipment/System Groundingp. 132
3.3.1 Isolated Systemsp. 133
3.3.2 Clustered Systemsp. 133
3.3.3 Distributed Systemsp. 140
3.4 Ground Loopsp. 142
3.5 Low-Frequency Analysis of Common-Mode Chokep. 147
3.6 High-Frequency Analysis of Common-Mode Chokep. 152
3.7 Single Ground Reference for a Circuitp. 154
Summaryp. 155
Problemsp. 156
Referencesp. 157
Further Readingp. 157
4 Balancing and Filteringp. 158
4.1 Balancingp. 158
4.1.1 Common-Mode Rejection Ratiop. 161
4.1.2 Cable Balancep. 165
4.1.3 System Balancep. 166
4.1.4 Balanced Loadsp. 166
4.2 Filteringp. 174
4.2.1 Common-Mode Filtersp. 174
4.2.2 Parasitic Effects in Filtersp. 177
4.3 Power Supply Decouplingp. 178
4.3.1 Low-Frequency Analog Circuit Decouplingp. 183
4.3.2 Amplifier Decouplingp. 185
4.4 Driving Capacitive Loadsp. 186
4.5 System Bandwidthp. 188
4.6 Modulation and Codingp. 190
Summaryp. 190
Problemsp. 191
Referencesp. 192
Further Readingp. 193
5 Passive Componentsp. 194
5.1 Capacitorsp. 194
5.1.1 Electrolytic Capacitorsp. 195
5.1.2 Film Capacitorsp. 197
5.1.3 Mica and Ceramic Capacitorsp. 198
5.1.4 Feed-Through Capacitorsp. 200
5.1.5 Paralleling Capacitorsp. 202
5.2 Inductorsp. 203
5.3 Transformersp. 204
5.4 Resistorsp. 206
5.4.1 Noise in Resistorsp. 207
5.5 Conductorsp. 208
5.5.1 Inductance of Round Conductorsp. 209
5.5.2 Inductance of Rectangular Conductorsp. 210
5.5.3 Resistance of Round Conductorsp. 211
5.5.4 Resistance of Rectangular Conductorsp. 213
5.6 Transmission Linesp. 215
5.6.1 Characteristic Impedancep. 217
5.6.2 Propagation Constantp. 220
5.6.3 High-Frequency Lossp. 221
5.6.4 Relationship Among C, L and ¿r.p. 224
5.6.5 Final Thoughtsp. 225
5.7 Ferritesp. 225
Summaryp. 233
Problemsp. 234
Referencesp. 237
Further Readingp. 237
6 Shieldingp. 238
6.1 Near Fields and Far Fieldsp. 238
6.2 Characteristic and Wave Impedancesp. 241
6.3 Shielding Effectivenessp. 243
6.4 Absorption Lossp. 245
6.5 Reflection Lossp. 249
6.5.1 Reflection Loss to Plane Wavesp. 252
6.5.2 Reflection Loss in the Near Fieldp. 253
6.5.3 Electric Field Reflection Lossp. 254
6.5.4 Magnetic Field Reflection Lossp. 255
6.5.5 General Equations for Reflection Lossp. 256
6.5.6 Multiple Reflections in Thin Shieldsp. 256
6.6 Composite Absorption and Reflection Lossp. 257
6.6.1 Plane Wavesp. 257
6.6.2 Electric Fieldsp. 258
6.6.3 Magnetic Fieldsp. 259
6.7 Summary of Shielding Equationsp. 260
6.8 Shielding with Magnetic Materialsp. 260
6.9 Experimental Data

p. 265

6.10 Apertures

p. 267

6.10.1 Multiple Aperturesp. 270
6.10.2 Seamsp. 273
6.10.3 Transfer Impedancep. 277
6.11 Waveguide Below Cutoffp. 280
6.12 Conductive Gasketsp. 282
6.12.1 Joints of Dissimilar Metalsp. 283
6.12.2 Mounting of Conductive Gasketsp. 284
6.13 The "Ideal" Shieldp. 287
6.14 Conductive Windowsp. 288
6.14.1 Transparent Conductive Coatingsp. 288
6.14.2 Wire Mesh Screensp. 289
6.14.3 Mounting of Windowsp. 289
6.15 Conductive Coatingsp. 289
6.15.1 Conductive Paintsp. 291
6.15.2 Flame/Arc Sprayp. 291
6.15.3 Vacuum Metalizingp. 291
6.15.4 Electroless Platingp. 292
6.15.5 Metal Foil Liningsp. 292
6.15.6 Filled Plasticp. 293
6.16 Internal Shieldsp. 293
6.17 Cavity Resonancep. 295
6.18 Grounding of Shieldsp. 296
Summaryp. 296
Problemsp. 297
Referencesp. 299
Further Readingp. 300
7 Contact Protectionp. 302
7.1 Glow Dischargesp. 302
7.2 Metal-Vapor or Arc Dischargesp. 303
7.3 AC Versus DC Circuitsp. 305
7.4 Contact Materialp. 306
7.5 Contact Ratingp. 306
7.6 Loads with High Inrush Currentsp. 307
7.7 Inductive Loadsp. 308
7.8 Contact Protection Fundamentalsp. 310
7.9 Transient Suppression for Inductive Loads

p. 314

7.10 Contact Protection Networks for Inductive Loads

p. 318

7.10.1 C Networkp. 318
7.10.2 R-C Networkp. 318
7.10.3 R-C-D Networkp. 321
7.11 Inductive Loads Controlled by a Transistor Switchp. 322
7.12 Resistive Load Contact Protectionp. 323
7.13 Contact Protection Selection Guidep. 323
7.14 Examplesp. 324
Summaryp. 325
Problemsp. 326
Referencesp. 327
Further Readingp. 327
8 Intrinsic Noise Sourcesp. 328
8.1 Thermal Noisep. 328
8.2 Characteristics of Thermal Noisep. 332
8.3 Equivalent Noise Bandwidthp. 334
8.4 Shot Noisep. 337
8.5 Contact Noisep. 338
8.6 Popcorn Noisep. 339
8.7 Addition of Noise Voltagesp. 340
8.8 Measuring Random Noisep. 341
Summaryp. 342
Problemsp. 343
Referencesp. 345
Further Readingp. 345
9 Active Device Noisep. 346
9.1 Noise Factorp. 346
9.2 Measurement of Noise Factorp. 349
9.2.1 Single-Frequency Methodp. 349
9.2.2 Noise Diode Methodp. 350
9.3 Calculating S/N Ratio and Input Noise Voltage from Noise Factorp. 351
9.4 Noise Voltage and Current Modelp. 353
9.5 Measurment of Vn and Inp. 355
9.6 Calculating Noise Factor and S/N Radio from Vn-Inp. 356
9.7 Optimum Source Resistancep. 357
9.8 Noise Factor of Cascaded Stagesp. 360
9.9 Noise Temperature

p. 362

9.10 Bipolar Transistor Noise

p. 364

9.10.1 Transistor Noise Factorp. 365
9.10.2 Vn-In for Transistorsp. 367
9.11 Field-Effect Transistor Noisep. 368
9.11.1 FET Noise Factorp. 368
9.11.2 Vn-In Representation of FET Noisep. 370
9.12 Noise in Operational Amplifiersp. 370
9.12.1 Methods of Specifying Op-Amp Noisep. 373
9.12.2 Op-Amp Noise Factorp. 375
Summaryp. 375
Problemsp. 376
Referencesp. 377
Further Readingp. 378
10 Digital Circuit Grounding

p. 379

10.1 Frequency Versus Time Domainp. 380
10.2 Analog Versus Digital Circuitsp. 380
10.3 Digital Logic Noisep. 380
10.4 Internal Noise Sourcesp. 381
10.5 Digital Circuit Ground Noisep. 384
10.5.1 Minimizing Inductancep. 385
10.5.2 Mutual Inductancep. 386
10.5.3 Practical Digital Circuit Ground Systemsp. 388
10.5.4 Loop Areap. 390
10.6 Ground Plane Current Distribution and Impedancep. 391
10.6.1 Reference Plane Current Distributionp. 392
10.6.2 Ground Plane Impedancep. 400
10.6.3 Ground Plane Voltagep. 408
10.6.4 End Effectsp. 409
10.7 Digital Logic Current Flowp. 412
10.7.1 Microstrip Linep. 414
10.7.2 Striplinep. 415
10.7.3 Digital Circuit Current Flow Summaryp. 418
Summaryp. 419
Problemsp. 420
Referencesp. 421
Further Readingp. 422
Part 2 EMC Applicationsp. 423
11 Digital Circuit Power Distributionp. 425
11.1 Power Supply Decouplingp. 425
11.2 Transient Power Supply Currentsp. 426
11.2.1 Transient Load Currentp. 428
11.2.2 Dynamic Internal Currentp. 428
11.2.3 Fourier Spectrum of the Transient Currentp. 429
11.2.4 Total Transient Currentp. 431
11.3 Decoupling Capacitorsp. 431
11.4 Effective Decoupling Strategiesp. 436
11.4.1 Multiple Decoupling Capacitorsp. 437
11.4.2 Multiple Capacitors of the Same Valuep. 437
11.4.3 Multiple Capacitors of Two Different Valuesp. 440
11.4.4 Multiple Capacitors of Many Different Valuesp. 444
11.4.5 Target Impedancep. 445
11.4.6 Embedded PCB Capacitancep. 447
11.4.7 Power Supply Isolationp. 452
11.5 The Effect of Decoupling on Radiated Emissionsp. 454
11.6 Decoupling Capacitor Type and Valuep. 456
11.7 Decoupling Capacitor Placement and Mountingp. 457
11.8 Bulk Decoupling Capacitorsp. 459
11.9 Power Entry Filtersp. 460
Summaryp. 461
Problemsp. 461
Referencesp. 463
Further Readingp. 463
12 Digital Circuit Radiationp. 464
12.1 Differential-Mode Radiationp. 465
12.1.1 Loop Areap. 468
12.1.2 Loop Currentp. 468
12.1.3 Fourier Seriesp. 468
12.1.4 Radiated Emission Envelopep. 470
12.2 Controlling Differential-Mode Radiationp. 471
12.2.1 Board Layoutp. 471
12.2.2 Canceling Loopsp. 474
12.2.3 Dithered Clocksp. 475
12.3 Common-Mode Radiationp. 477
12.4 Controlling Common-Mode Radiationp. 480
12.4.1 Common-Mode Voltagep. 481
12.4.2 Cable Filtering and Shieldingp. 482
12.4.3 Separate I/O Groundsp. 485
12.4.4 Dealing With Common-Mode Radiation Issuesp. 488
Summaryp. 488
Problemsp. 489
Referencesp. 490
Further Readingp. 491
13 Conducted Emissionsp. 492
13.1 Power Line Impedancep. 492
13.1.1 Line Impedance Stabilization Networkp. 494
13.2 Switched-Mode Power Suppliesp. 495
13.2.1 Common-Mode Emissionsp. 498
13.2.2 Differential-Mode Emissionsp. 501
13.2.3 DC-to-DC Convertersp. 509
13.2.4 Rectifier Diode Noisep. 509
13.3 Power-Line Filtersp. 511
13.3.1 Common-Mode Filteringp. 512
13.3.2 Differential-Mode Filteringp. 512
13.3.3 Leakage Inductancep. 513
13.3.4 Filter Mountingp. 516
13.3.5 Power Supplies with Integral Power-Line Filtersp. 519
13.3.6 High-Frequency Noisep. 520
13.4 Primary-to-Secondary Common-Mode Couplingp. 523
13.5 Frequency Ditheringp. 524
13.6 Power Supply Instabilityp. 524
13.7 Magnetic Field Emissionsp. 525
13.8 Variable Speed Motor Drivesp. 528
13.9 Harmonic Suppressionp. 536
13.9.1 Inductive Input Filtersp. 538
13.9.2 Active Power Factor Correctionp. 538
13.9.3 AC Line Reactorsp. 539
Summaryp. 541
Problemsp. 542
Referencesp. 544
Further Readingp. 544
14 RF and Transient Immunityp. 545
14.1 Performance Criteriap. 545
14.2 RF Immunityp. 546
14.2.1 The RF Environmentp. 547
14.2.2 Audio Rectificationp. 548
14.2.3 RFI Mitigation Techniquesp. 549
14.3 Transient Immunityp. 557
14.3.1 Electrostatic Dischargep. 558
14.3.2 Electrical Fast Transientp. 558
14.3.3 Lightning Surgep. 559
14.3.4 Transient Suppression Networksp. 560
14.3.5 Signal Line Suppressionp. 561
14.3.6 Protection of High-Speed Signal Linesp. 564
14.3.7 Power Line Transient Suppressionp. 566
14.3.8 Hybrid Protection Networkp. 570
14.4 Power Line Disturbancesp. 572
14.4.1 Power Line Immunity Curvep. 573
Summaryp. 575
Problemsp. 576
Referencesp. 578
Further Readingp. 579
15 Electrostatic Dischargep. 580
15.1 Static Generationp. 580
15.1.1 Inductive Chargingp. 583
15.1.2 Energy Storagep. 585
15.2 Human Body Modelp. 587
15.3 Static Dischargep. 589
15.3.1 Decay Timep. 590
15.4 ESD Protection in Equipment Designp. 592
15.5 Preventing ESD Entryp. 594
15.5.1 Metallic Enclosuresp. 595
15.5.2 Input/Output Cable Treatmentp. 599
15.5.3 Insulated Enclosuresp. 604
15.5.4 Keyboards and Control Panelsp. 607
15.6 Hardening Sensitive Circuitsp. 608
15.7 ESD Groundingp. 608
15.8 Nongrounded Productsp. 609
15.9 Field-Induced Upsetp. 610
15.9.1 Inductive Couplingp. 611
15.9.2 Capacitive Couplingp. 611
15.10 Transient Hardened Software Designp. 612
15.10.1 Detecting Errors in Program Flowp. 613
15.10.2 Detecting Errors in Input/Outputp. 614
15.10.3 Detecting Errors in Memoryp. 616
15.11 Time Windowsp. 617
Summaryp. 617
Problemsp. 619
Referencesp. 620
Further Readingp. 621
16 PCB Layout and Stackupp. 622
16.1 General PCB Layout Considerationsp. 622
16.1.1 Partitioningp. 622
16.1.2 Keep Out Zonesp. 622
16.1.3 Critical Signalsp. 623
16.1.4 System Clocksp. 624
16.2 PCB-to-Chassis Ground Connectionp. 625
16.3 Return Path Discontinuitiesp. 626
16.3.1 Slots in Ground/Power Planesp. 627
16.3.2 Split Ground/Power Planesp. 628
16.3.3 Changing Reference Planesp. 630
16.3.4 Referencing the Top and Bottom of the Same Planep. 633
16.3.5 Connectorsp. 634
16.3.6 Ground Fillp. 634
16.4 PCB Layer Stackupp. 635
16.4.1 One- and Two-Layer Boardsp. 636
16.4.2 Multilayer Boardsp. 637
16.4.3 General PCB Design Procedurep. 653
Summaryp. 655
Problemsp. 657
Referencesp. 658
Further Readingp. 658
17 Mixed-Signal PCB Layoutp. 660
17.1 Split Ground Planesp. 660
17.2 Microstrip Ground Plane Current Distributionp. 662
17.3 Analog and Digital Ground Pinsp. 665
17.4 When Should Split Ground Planes Be Used?p. 668
17.5 Mixed Signal ICsp. 669
17.5.1 Multi-Board Systemsp. 671
17.6 High-Resolution A/D and D/A Convertersp. 671
17.6.1 Striplinep. 673
17.6.2 Asymmetric Striplinep. 674
17.6.3 Isolated Analog and Digital Ground Planesp. 675
17.7 A/D and D/A Converter Support Circuitryp. 676
17.7.1 Sampling Clocksp. 676
17.7.2 Mixed-Signal Support Circuitryp. 678
17.8 Vertical Isolationp. 679
17.9 Mixed-Signal Power Distributionp. 681
17.9.1 Power Distributionp. 681
17.9.2 Decouplingp. 682
17.10 The IPC Problemp. 684
Summaryp. 685
Problemsp. 686
Referencesp. 687
Further Readingp. 687
18 Precompliance EMC Measurementsp. 688
18.1 Test Environmentp. 689
18.2 Antennas Versus Probesp. 689
18.3 Common-Mode Currents on Cablesp. 690
18.3.1 Test Procedurep. 693
18.3.2 Cautionsp. 693
18.4 Near Field Measurementsp. 694
18.4.1 Test Procedurep. 695
18.4.2 Cautionsp. 696
18.4.3 Seams and Apertures in Enclosuresp. 697
18.5 Noise Voltage Measurementsp. 697
18.5.1 Balanced Differential Probep. 698
18.5.2 DC to 1-GHz Probep. 700
18.5.3 Cautionsp. 700
18.6 Conducted Emission Testingp. 700
18.6.1 Test Procedurep. 702
18.6.2 Cautionsp. 703
18.6.3 Separating C-M from D-M Noisep. 704
18.7 Spectrum Analyzersp. 707
18.7.1 Detector Functionsp. 709
18.7.2 General Test Procedurep. 710
18.8 EMC Crash Cartp. 711
18.8.1 Mitigation Parts Listp. 712
18.9 One-Meter Radiated Emission Measurementsp. 713
18.9.1 Test Environmentp. 713
18.9.2 Limits for 1-m Testingp. 713
18.9.3 Antennas for 1-m Testingp. 714
18.10 Precompliance Immunity Testingp. 717
18.10.1 Radiated Immunityp. 717
18.10.2 Conducted Immunityp. 720
18.10.3 Transient Immunityp. 721
18.11 Precompliance Power Quality Testsp. 723
18.11.1 Harmonicsp. 724
18.11.2 Flickerp. 725
18.12 Marginp. 726
18.12.1 Radiated Emission Marginp. 726
18.12.2 Electrostatic Discharge Marginp. 727
Summaryp. 728
Problemsp. 729
Referencesp. 730
Further Readingp. 731
Appendixp. 733
A The Decibelp. 733
A.1 Properties of Logarithmsp. 733
A.2 Using the Decibel for Other than Power Measurementsp. 734
A.3 Power Loss or Negative Power Gainp. 736
A.4 Absolute Power Levelp. 736
A.5 Summing Powers Expressed in Decibelsp. 738
B The Ten Best Ways to Maximize the Emission from Your Productp. 740
C Multiple Reflections of Magnetic Fields in Thin Shieldsp. 743
D Dipoles for Dummiesp. 746
D.1 Basic Dipoles for Dummiesp. 746
D.2 Intermediate Dipoles for Dummiesp. 751
D.3 Advanced Dipoles for Dummiesp. 756
D.3.1 Impedance of a Dipolep. 756
D.3.2 Dipole Resonancep. 756
D.3.3 Receiving Dipolep. 759
D.3.4 Theory of Imagesp. 759
D.3.5 Dipole Arraysp. 761
D.3.6 Very High-Frequency Dipolesp. 763
Summaryp. 763
Further Readingp. 764
E Partial Inductancep. 765
E.1 Inductancep. 765
E.2 Loop Inductancep. 767
E.2.1 Inductance of a Rectangular Loopp. 768
E.3 Partial Inductancep. 770
E.3.1 Partial Self-Inductancep. 771
E.3.2 Partial Mutual Inductancep. 773
E.3.3 Net Partial-Inductancep. 776
E.3.4 Partial Inductance Applicationsp. 776
E.3.5 Transmission Line Examplep. 778
E.4 Ground Plane Inductance Measurement Test Setupp. 780
E.5 Inductance Notationp. 785
Summaryp. 788
Referencesp. 788
Further Readingp. 789
F Answers to Problemsp. 790
Indexp. 825
Go to:Top of Page