Skip to:Content
|
Bottom
Cover image for Designing control loops for linear and switching power supplies : a tutorial guide
Title:
Designing control loops for linear and switching power supplies : a tutorial guide
Personal Author:
Publication Information:
Boston : Artech House, c2012
Physical Description:
xvii, 593 p. : ill. ; 26 cm.
ISBN:
9781608075577

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010301459 TK7868.P6 B37 2012 Open Access Book Book
Searching...

On Order

Summary

Summary

A control system is a complex electronics architecture involving setpoints and targets. One simple example is the cruise control system of an automobile. Rather than delving into extensive theory, this book focuses on what power electronics engineers really need to know for compensating or stabilizing a given system.


Author Notes

Christophe Basso is a product engineering director at ON Semiconductor in Toulouse, France. He received his B.S.E.E. in electronics from Montpellier University and his M.S.E.E. in power electronics from the National Polytechnic Institute of Toulouse. A senior member of the IEEE, Mr. Basso is a recognized expert, patent holder, and author in the field.


Table of Contents

Forewordp. xiii
Prefacep. xv
Acknowledgmentsp. xvii
Chapter 1 Basics of Loop Controlp. 1
1.1 Open-Loop Systemsp. 1
1.1.1 Perturbationsp. 3
1.2 The Necessity of Control-Closed-Loop Systemsp. 4
1.3 Notions of Time Constantsp. 6
1.3.1 Working with Time Constantsp. 7
1.3.2 The Proportional Termp. 9
1.3.3 The Derivative Termp. 10
1.3.4 The Integral Termp. 11
1.3.5 Combining the Factorsp. 12
1.4 Performance of a Feedback Control Systemp. 12
1.4.1 Transient or Steady State?p. 13
1.4.2 The Stepp. 15
1.4.3 The Sinusoidal Sweepp. 16
1.4.4 The Bode Plotp. 17
1.5 Transfer Functionsp. 19
1.5.1 The Laplace Transformp. 20
1.5.2 Excitation and Response Signalsp. 22
1.5.3 A Quick Examplep. 23
1.5.4 Combining Transfer Functions with Bode Plotsp. 25
1.6 Conclusionp. 27
Selected Bibliographyp. 27
Chapter 2 Transfer Functionsp. 29
2.1 Expressing Transfer Functionsp. 29
2.1.1 Writing Transfer Functions the Right Wayp. 31
2.1.2 The 0-db Crossover Polep. 32
2.2 Solving for the Rootsp. 32
2.2.1 Poles and Zeros Found by Inspectionp. 35
2.2.2 Poles, Zeros, and Time Constantsp. 36
2.3 Transient Response and Rootsp. 39
2.3.1 When the Roots Are Movingp. 43
2.4 S-Plane and Transient Responsep. 49
2.4.1 Roots Trajectories in the Complex Planep. 54
2.5 Zeros in the Right Half Planep. 56
2.5.1 A Two-Step Conversion Processp. 56
2.5.2 The Inductor Current Slew-Rate Is the Limitp. 58
2.5.3 An Average Model to Visualize RHP Zero Effectsp. 60
2.5.4 The Right Half Plane Zero in the Boost Converterp. 62
2.6 Conclusionp. 66
Referencesp. 66
Appendix 2A Determining a Bridge Input Impedancep. 67
Referencep. 69
Appendix 2B Plotting Evans Loci with Mathcadp. 70
Appendix 2C Heaviside Expansion Formulasp. 71
Referencep. 74
Appendix 2D Plotting a Right Half Plane Zero with SPICEp. 74
Chapter 3 Stability Criteria of a Control Systemp. 77
3.1 Building An Oscillatorp. 77
3.1.1 Theory at Workp. 79
3.2 Stability Criteriap. 82
3.2.1 Gain Margin and Conditional Stabilityp. 84
3.2.2 Minimum Versus Nonminimum-Phase Functionsp. 87
3.2.3 Nyquist Plotsp. 89
3.2.4 Extracting the Basic Information from the Nyquist Plotp. 91
3.2.5 Modulus Marginp. 93
3.3 Transient Response, Quality Factor, and Phase Marginp. 97
3.3.1 A Second-Order System, the RLC Circuitp. 97
3.3.2 Transient Response of a Second-Order Systemp. 101
3.3.3 Phase Margin and Quality Factorp. 110
3.3.4 Opening the Loop to Measure the Phase Marginp. 117
3.3.5 The Phase Margin of a Switching Converterp. 120
3.3.6 Considering a Delay in the Conversion Processp. 122
3.3.7 The Delay in the Laplace Domainp. 127
3.3.8 Delay Margin versus Phase Marginp. 130
3.4 Selecting the Crossover Frequencyp. 133
3.4.1 A Simplified Buck Converterp. 135
3.4.2 The Output Impedance in Closed-Loop Conditionsp. 138
3.4.3 The Closed-Loop Output Impedance at Crossoverp. 142
3.4.4 Scaling the Reference to Obtain the Desired Outputp. 143
3.4.5 Increasing the Crossover Frequency Furtherp. 149
3.5 Conclusionp. 150
Referencesp. 151
Chapter 4 Compensationp. 153
4.1 The PID Compensatorp. 153
4.1.1 The Pip Expressions in the Laplace Domainp. 155
4.1.2 Practical Implementation of a PID Compensatorp. 157
4.1.3 Practical Implementation of a PI Compensatorp. 161
4.1.4 The PID at Work in a Buck Convenerp. 163
4.1.5 The Buck Converter Transient Response with the PID Compensationp. 170
4.1.6 The Setpoint Is Fixed: We Have a Regulator!p. 171
4.1.7 A Peaky Output Impedance Plotp. 174
4.2 Stabilizing the Converter with Poles-Zeros Placementp. 176
4.2.1 A Simple Step-by-Step Techniquep. 177
4.2.2 The Plant Transfer Functionp. 178
4.2.3 Canceling the Static Error with an Integratorp. 179
4.2.4 Adjusting the Gain with the Integrator: The Type 1p. 182
4.2.5 Locally Boosting the Phase at Crossoverp. 183
4.2.6 Placing Poles and Zeros to Create Phase Boostp. 185
4.2.7 Create Phase Boost up to 90° with a Single Pole/Zero Pairp. 189
4.2.8 Mid-Band Gain Adjustment with the Single Pole/Zero Pair: The Type 2p. 191
4.2.9 Design Example with a Type 2p. 192
4.2.10 Create Phase Boost up to 180° with a Double Pole/Zero Pairp. 194
4.2.11 Mid-Band Gain Adjustment with the Double Pole/Zero Pair: The Type 3p. 197
4.2.12 Design Example with a Type 3p. 199
4.2.13 Selecting the Right Compensator Typep. 200
4.2.14 The Type 3 at Work with a Buck Converterp. 201
4.3 Output Impedance Shapingp. 210
4.3.1 Making the Output Impedance Resistivep. 212
4.4 Conclusionp. 221
Referencesp. 222
Appendix 4A The Buck Output Impedance with Fast Analytical Techniquesp. 222
Referencep. 227
Appendix 4B The Quality Factor from a Bode Plot with Group Delayp. 227
Appendix 4C The Phase Display in Simulators or Mathematical Solversp. 230
Calculating the Tangentp. 232
Accounting for the Quadrantp. 234
Improving the Arctangent Functionp. 236
Phase Display in a SPICE Simulatorp. 237
Conclusionp. 242
Referencep. 243
Appendix 4D Impact of Open-Loop Gain and Origin Pole on Op Amp-Based Transfer Functionsp. 243
The Integrator Casep. 248
Appendix 4E Summary of Compensator Configurationsp. 252
Chapter 5 Operational Amplifiers-Based Compensatorsp. 253
5.1 Type 1: An Origin Polep. 253
5.1.1 A Design Examplep. 255
5.2 Type 2: An Origin Pole, plus a Pole/Zero Pairp. 257
5.2.1 A Design Examplep. 260
5.3 Type 2a: An Origin Pole plus a Zerop. 262
5.3.1 A Design Examplep. 263
5.4 Type 2b: Some Static Gain plus a Polep. 264
5.4.1 A Design Examplep. 266
5.5 Type 2: Isolation with an Optocouplerp. 267
5.5.1 Optocoupler and Op Amp: the Direct Connection, Common Emitterp. 269
5.5.2 A Design Examplep. 271
5.5.3 Optocoupler and Op Amp: The Direct Connection, Common Collectorp. 273
5.5.4 Optocoupler and Op Amp: The Direct Connection Common Emitter and UC384Xp. 275
5.5.5 Optocoupler and Op Amp: Pull Down with Fast Lanep. 276
5.5.6 A Design Examplep. 279
5.5.7 Optocoupler and Op Amp: Pull-Down with Fast Lane, Common Emitter, and UC384Xp. 280
5.5.8 Optocoupler and Op Amp: Pull Down Without Fast Lanep. 283
5.5.9 A Design Examplep. 285
5.5.10 Optocoupler and Op Amp: A Dual-Loop Approach in CC-CV Applicationsp. 288
5.5.11 A Design Examplep. 293
5.6 The Type 2: Pole and Zero are Coincident to Create an Isolated Type 1p. 299
5.6.1 A Design Examplep. 301
5.7 The Type 2: A Slightly Different Arrangementp. 303
5.8 The Type 3: An Origin Pole, a Pole/Zero Pairp. 308
5.8.1 A Design Examplep. 313
5.9 The Type 3: Isolation with an Optocouplerp. 315
5.9.1 Optocoupler and Op Amp: The Direct Connection, Common Collectorp. 315
5.9.2 A Design Examplep. 317
5.9.3 Optocoupler and Op Amp: The Direct Connection, Common Emitterp. 319
5.9.4 Optocoupler and Op Amp: The Direct Connection, Common Emitter, and UC384Xp. 321
5.9.5 Optocoupler and Op Amp: Pull-Down with Fast Lanep. 322
5.9.6 A Design Examplep. 326
5.9.7 Optocoupler and Op Amp: Pull Down without Fast Lanep. 328
5.9.8 A Design Examplep. 332
5.10 Conclusionp. 335
Referencesp. 335
Appendix 5A Summary Picturesp. 335
Appendix 5B Automating Components Calculations with k Factorp. 340
Type 1

p. 340

Type 2

p. 341

Type 3

p. 342

Referencep. 344
Appendix 5C The Optocouplerp. 346
Transmitting Lightp. 346
Current Transfer Ratiop. 347
The Optocoupler Polep. 348
Extracting the Optocoupler Polep. 350
Watch for the LED Dynamic Resistancep. 351
Good Design Practicesp. 354
Referencesp. 355
Chapter 6 Operational Transconductance Amplifier-Based Compensatorsp. 357
6.1 The Type 1: An Origin Polep. 358
6.1.1 A Design Examplep. 359
6.2 The Type 2: An Origin Pole plus a Pole/Zero Pairp. 360
6.2.1 A Design Examplep. 364
6.3 Optocoupler and OTA: A Buffered Connectionp. 365
6.3.1 A Design Examplep. 368
6.4 The Type 3: An Origin Pole and a Pole/Zero Pairp. 370
6.4.1 A Design Examplep. 377
6.5 Conclusionp. 380
Appendix 6A Summary Picturesp. 380
Referencesp. 381
Chapter 7 TL431-Based Compensatorsp. 383
7.1 A Bandgap-Based Componentp. 383
7.1.1 The Reference Voltagep. 385
7.1.2 The Need for Bias Currentp. 387
7.2 Biasing the TL431: The Impact on the Gainp. 390
7.3 Biasing the TL431: A Different Arrangementp. 392
7.4 Biasing the TL431: Component Limitsp. 395
7.5 The Fast Lane Is the Problemp. 396
7.6 Disabling the Fast Lanep. 397
7.7 The Type 1: An Origin Pole, Common-Emitter Configurationp. 399
7.7.1 A Design Examplep. 402
7.8 The Type 1: Common-Collector Configurationp. 403
7.9 The Type 2: An Origin Pole plus a Pole/Zero Pairp. 403
7.9.1 A Design Examplep. 407
7.10 The Type 2: Common-Emitter Configuration and UC384Xp. 408
7.11 The Type 2: Common-Collector Configuration and UC384Xp. 411
7.12 The Type 2: Disabling the Fast Lanep. 411
7.12.1 A Design Examplep. 413
7.13 The Type 3: An Origin Pole plus a Double Pole/Zero Pairp. 415
7.13.1 A Design Examplep. 423
7.14 The Type 3: An Origin Pole plus a Double Pole/Zero Pair-No Fast Lanep. 424
7.14.1 A Design Examplep. 429
7.15 Testing the Ac Responses on a Benchp. 431
7.16 Isolated Zener-Based Compensatorp. 434
7.16.1 A Design Examplep. 436
7.17 Nonisolated Zener-Based Compensatorp. 441
7.18 Nonisolated Zener-Based Compensator: A Lower Cost Versionp. 443
7.19 Conclusionp. 445
Referencesp. 445
Appendix 7A Summary Picturesp. 445
Appendix 7B Second Stage LC Filterp. 448
A Simplified Approachp. 449
Simulation at Workp. 450
Referencesp. 454
Chapter 8 Shunt Regulator-Based Compensatorsp. 455
8.1 The Type 2: An Origin Pole plus a Pole/Zero Pairp. 456
8.1.1 A Design Examplep. 460
8.2 The Type 3: An Origin Pole plus a Double Pole/Zero Pairp. 466
8.2.1 A Design Examplep. 468
8.3 The Type 3: An Origin Pole plus a Double Pole/Zero Pair-No Fast Lanep. 471
8.3.1 A Design Examplep. 474
8.4 Isolated Zener-Based Compensatorp. 476
8.4.1 A Design Examplep. 480
8.5 Conclusionp. 483
Referencesp. 483
Appendix 8A Summary Picturesp. 484
Chapter 9 Measurements and Design Examplesp. 487
9.1 Measuring the Control System Transfer Functionp. 487
9.1.1 Opening the Loop with Bias Point Lossp. 488
9.1.2 Power Stage Transfer Function without Bias Point Lossp. 492
9.1.3 Opening the Loop in ac Onlyp. 493
9.1.4 Voltage Variations at the Injection Pointsp. 496
9.1.5 Impedances at the Injection Pointsp. 504
9.1.6 Buffering the Datap. 505
9.2 Design Example 1: A Forward dc-dc Converterp. 509
9.2.1 Moving Parametersp. 509
9.2.2 The Electrical Schematicp. 511
9.2.3 Extracting the Power Stage Transfer Responsep. 514
9.2.4 Compensating the Converterp. 515
9.3 Design Example 2: A Linear Regulatorp. 519
9.3.1 Extracting the Power Stage Transfer Functionp. 520
9.3.2 Crossover Frequency Selection and Compensationp. 521
9.3.3 Testing the Transient Responsep. 527
9.4 Design Example 3: A CCM Voltage-Mode Boost Converterp. 528
9.4.1 The Power Stage Transfer Functionp. 529
9.4.2 Compensating the Converterp. 533
Strategy 1

p. 535

Strategy 2

p. 535

9.4.3 Plotting the Loop Gainp. 537
9.5 Design Example 4: A Primary-Regulated Flyback Converterp. 539
9.5.1 Deriving the Transfer Functionp. 540
9.5.2 Verifying the Equationsp. 544
9.5.3 Stabilizing the Converterp. 545
9.6 Design Example 5: Input Filter Compensationp. 552
9.6.1 A Negative Incremental Resistancep. 553
9.6.2 Building an Oscillatorp. 554
9.6.3 Taming the Oscillationsp. 556
9.7 Conclusionp. 562
Referencesp. 562
Conclusionp. 565
Appendixp. 567
About the Authorp. 571
Go to:Top of Page