Skip to:Content
|
Bottom
Cover image for Statistical and computational methods in brain image analysis
Title:
Statistical and computational methods in brain image analysis
Personal Author:
Series:
Chapman & Hall/CRC mathematical and computational imaging sciences series
Publication Information:
Boca Raton : CRC Press, 2014
Physical Description:
xvi, 400 p. : ill. ; 25 cm.
ISBN:
9781439836354

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
33000000000715 RC386.6.D52 C48 2014 Open Access Book Book
Searching...

On Order

Summary

Summary

The massive amount of nonstandard high-dimensional brain imaging data being generated is often difficult to analyze using current techniques. This challenge in brain image analysis requires new computational approaches and solutions. But none of the research papers or books in the field describe the quantitative techniques with detailed illustrations of actual imaging data and computer codes. Using MATLAB® and case study data sets, Statistical and Computational Methods in Brain Image Analysis is the first book to explicitly explain how to perform statistical analysis on brain imaging data.

The book focuses on methodological issues in analyzing structural brain imaging modalities such as MRI and DTI. Real imaging applications and examples elucidate the concepts and methods. In addition, most of the brain imaging data sets and MATLAB codes are available on the author's website.

By supplying the data and codes, this book enables researchers to start their statistical analyses immediately. Also suitable for graduate students, it provides an understanding of the various statistical and computational methodologies used in the field as well as important and technically challenging topics.


Author Notes

Moo K. Chung, Ph.D. is an associate professor in the Department of Biostatistics and Medical Informatics at the University of Wisconsin-Madison. He is also affiliated with the Waisman Laboratory for Brain Imaging and Behavior. He has won the Vilas Associate Award for his applied topological research (persistent homology) to medical imaging and the Editor's Award for best paper published in Journal of Speech, Language, and Hearing Research. Dr. Chung received a Ph.D. in statistics from McGill University. His main research area is computational neuroanatomy, concentrating on the methodological development required for quantifying and contrasting anatomical shape variations in both normal and clinical populations at the macroscopic level using various mathematical, statistical, and computational techniques.


Table of Contents

Prefacep. xv
1 Introduction to Brain and Medical Imagesp. 1
1.1 Image Volume Datap. 2
1.1.1 Amygdala Volume Datap. 4
1.2 Surface Mesh Datap. 6
1.2.1 Topology of Surface Datap. 6
1.2.2 Amygdala Surface Datap. 9
1.3 Landmark Datap. 11
1.3.1 Affine Transformsp. 11
1.3.2 Least Squares Estimationp. 13
1.4 Vector Datap. 15
1.5 Tensor and Curve Datap. 17
1.6 Brain Image Analysis Toolsp. 19
1.6.1 Surf Statp. 20
1.6.2 Public Image Databasep. 20
2 Bernoulli Models for Binary Imagesp. 21
2.1 Sum of Bernoulli Distributionsp. 21
2.2 Inference on Proportion of Activationp. 23
2.2.1 One Sample Testp. 23
2.2.2 Two Sample Testp. 26
2.3 HAT LAB Implementationp. 27
3 General Linear Modelsp. 29
3.1 General Linear Modelsp. 29
3.1.1 R-squarep. 31
3.1.2 CLM for Whole Brain Imagesp. 32
3.2 Voxel-Based Morphometryp. 32
3.2.1 Mixture Modelsp. 34
3.2.2 EM-Algorithmp. 36
3.2.3 Two-Components Gaussian Mixturep. 37
3.3 Case Study: VBM in Corpus Callosump. 40
3.3.1 White Matter Density Mapsp. 42
3.3.2 Manipulating Density Mapsp. 42
3.3.3 Numerical Implementationp. 46
3.4 Testing Interactionsp. 49
4 Gaussian Kernel Smoothingp. 51
4.1 Kernel Smoothingp. 51
4.2 Gaussian Kernel Smoothingp. 52
4.2.1 Fullwidth at Half Maximump. 53
4.3 Numerical Implementationp. 54
4.3.1 Smoothing Scalar Functionsp. 54
4.3.2 Smoothing Image Slicesp. 55
4.4 Case Study: Smoothing of DWI Stroke Lesionsp. 57
4.5 Effective FWHMp. 59
4.6 Checking Gaussiannessp. 60
4.6.1 Quantile-Quantile Plotsp. 60
4.6.2 Quantilesp. 60
4.6.3 Empirical Distributionp. 61
4.6.4 Normal Probability Plotsp. 61
4.6.5 MATLAB Implementationp. 62
4.7 Effect of Ganssianness on Kernel Smoothingp. 63
5 Random Fields Theoryp. 67
5.1 Random Fieldsp. 67
5.1.1 Gaussian Fieldsp. 68
5.1.2 Derivative of Gaussian Fieldsp. 69
5.1.3 Integration of Gaussian Fieldsp. 70
5.1.4 t, F and x 2 Fieldsp. 70
5.2 Simulating Gaussian Fieldsp. 71
5.3 Statistical Inference on Fieldsp. 73
5.3.1 Bonferroni Correctionp. 75
5.3.2 Rice Formulap. 76
5.3.3 Poisson Clumping Heuristicp. 78
5.4 Expected Euler Characteristicsp. 78
5.4.1 Intrinsic Volumesp. 79
5.4.2 Euler Characteristic Densityp. 80
5.4.3 Numerical Implementation of Euler Characteristicsp. 82
6 Anisotropic Kernel Smoothingp. 85
6.1 Anisotropic Gaussian Kernel Smoothingp. 85
6.1.1 Truncated Gaussian Kernelp. 87
6.2 Probabilistic Connectivity in DTIp. 88
6.3 Riemannian Metric Tensorsp. 89
6.4 Chapman-Kolmogorov Equationp. 91
6.5 Cholesky Factorization of DTIp. 95
6.6 Experimental Resultsp. 97
6.7 Discussionp. 98
7 Multivariate General Linear Modelsp. 101
7.1 Multivariate Normal Distributionsp. 101
7.1.1 Checking Bivariate Normality of Datap. 103
7.1.2 Covariance Matrix Factorizationp. 104
7.2 Deformation-Based Morphometry (DBM)p. 105
7.3 Hotelling's T 2 Statisticp. 108
7.4 Multivariate General Linear Modelsp. 111
7.4.1 SurfStatp. 113
7.5 Case Study: Surface Deformation Analysisp. 114
7.5.1 Univariate Tests in SurfStatp. 116
7.5.2 Multivariate Tests in SurfStatp. 119
8 Cortical Surface Analysisp. 121
8.1 Introductionp. 121
8.2 Modeling Surface Deformationp. 123
8.3 Surface Parameterizationp. 126
8.3.1 Quadratic Parameterizationp. 126
8.3.2 Numerical Implementationp. 129
8.4 Surface-Based Morphological Measuresp. 130
8.4.1 Local Surface Area Changep. 131
8.4.2 Local Gray Matter Volume Changep. 132
8.4.3 Cortical Thickness Changep. 134
8.4.4 Curvature Changep. 135
8.5 Surface-Based Diffusion Smoothingp. 135
8.6 Statistical Inference on the Cortical Surfacep. 139
8.7 Resultsp. 142
8.7.1 Gray Matter Volume Changep. 143
8.7.2 Surface Area Changep. 143
8.7.3 Cortical Thickness Changep. 144
8.7.4 Curvature Changep. 147
8.8 Discussionp. 148
9 Heat Kernel Smoothing on Surfacesp. 149
9.1 Introductionp. 149
9.2 Heat Kernel Smoothingp. 150
9.3 Numerical Implementationp. 156
9.4 Random Field Theory on Cortical Manifoldp. 159
9.5 Case Study: Cortical Thickness Analysisp. 160
9.6 Discussionp. 162
10 Cosine Series Representation of 3D Curvesp. 163
10.1 Introductionp. 163
10.2 Parameterization of 3D Curvesp. 166
10.2.1 Eigenfunctions of ID Laplacianp. 167
10.2.2 Cosine Representationp. 167
10.2.3 Parameter Estimationp. 168
10.2.4 Optimal Representationp. 169
10.3 Numerical Implementationp. 170
10.4 Modeling a Family of Curvesp. 172
10.4.1 Registering 3D Curvesp. 172
10.4.2 Inference on a Collection of Curvesp. 173
10.5 Case Study: White Matter Fiber Tractsp. 175
10.5.1 Image Acquisitionp. 175
10.5.2 Image Processingp. 176
10.5.3 Cosine Series Representationp. 177
10.5.4 Two Sample T-testp. 177
10.5.5 Hotelling's T-square Testp. 178
10.5.6 Simulating Curvesp. 178
10.6 Discussionp. 180
10.6.1 Similarly Shaped Tractsp. 180
10.6.2 Gibbs Phenomenonp. 180
11 Weighted Spherical Harmonic Representationp. 185
11.1 Introductionp. 185
11.2 Spherical Coordinatesp. 187
11.3 Spherical Harmonicsp. 188
11.3.1 Weighted Spherical Harmonic Representationp. 190
11.3.2 Estimating Spherical Harmonic Coefficientsp. 194
11.3.3 Validation Against Heat Kernel Smoothingp. 196
11.4 Weighted-SPHARM Packagep. 200
11.5 Surface Registrationp. 205
11.5.1 MATLAB Implementationp. 207
11.6 Encoding Surface Asymmetryp. 210
11.7 Case Study: Cortical Asymmetry Analysisp. 214
11.7.1 Descriptions of Data Setp. 214
11.7.2 Statistical Inference on Surface Asymmetryp. 216
11.8 Discussionp. 217
12 Multivariate Surface Shape Analysisp. 210
12.1 Introductionp. 219
12.2 Surface Parameterizationp. 222
12.2.1 Flattening of Simulated Cubep. 224
12.3 Weighted Spherical Harmonic Representationp. 226
12.3.1 Optimal Degree Selectionp. 226
12.4 Gibbs Phenomenon in SPHARMp. 228
12.4.1 Overshoot in Gibbs Phenomenonp. 232
12.4.2 Simulation Studyp. 233
12.5 Surface Normalizationp. 233
12.5.1 Validationp. 236
12.6 Image and Data Acquisitionp. 237
12.7 Resultsp. 239
12.7.1 Amygdala Volumetryp. 239
12.7.2 Local Shape Differencep. 239
12.7.3 Brain and Behavior Associationp. 241
12.8 Discussionp. 242
12.8.1 Anatomical Findingsp. 242
12.9 Numerical Implementationp. 243
13 Lap lace-Beltrami Eigenfunctions for Surface Datap. 247
13.1 Introductionp. 247
13.2 Heat Kernel Smoothingp. 248
13.2.1 Heat Kernel Smoothing in 2D Imagesp. 250
13.3 Generalized Eigenvalue Problemp. 252
13.3.1 Finite Element Methodp. 252
13.3.2 Fourier Coefficients Estimationp. 256
13.4 Numerical Implementationp. 257
13.5 Experimental Resultsp. 260
13.5.1 Image Acquisition and Preprocessingp. 260
13.5.2 Validation of Heat Kernel Smoothingp. 261
13.6 Case Study: Mandible Growth Modelingp. 265
13.6.1 Diffeomorphic Surface Registrationp. 266
13.6.2 Random Field Theoryp. 267
13.6.3 Numerical Implementationp. 268
13.7 Conclusionp. 274
14 Persistent Homologyp. 275
14.1 Introductionp. 275
14.2 Rips Filtrationp. 277
14.2.1 Topologyp. 277
14.2.2 Simplexp. 279
14.2.3 Rips Complexp. 279
14.2.4 Constructing Rips Filtrationp. 280
14.3 Heat Kernel Smoothing of Functional Signalp. 282
14.4 Min-max Diagramp. 283
14.4.1 Pairing Rulep. 286
14.4.2 Algorithmp. 287
14.5 Case Study: Cortical Thickness Analysisp. 289
14.5.1 Numerical Implementationp. 290
14.5.2 Statistical Inferencep. 292
14.6 Discussionp. 293
15 Sparse Networksp. 295
15.1 Introductionp. 295
15.2 Massive Univariate Methodsp. 296
15.3 Why Are Sparse Models Needed?p. 298
15.4 Persistent Structures for Sparse Correlationsp. 300
15.4.1 Numerical Implementationp. 304
15.5 Persistent Structures for Sparse Likelihoodp. 306
15.6 Case Study: Application to Persistent Homologyp. 309
15.6.1 MRI Data and Univariate-TBMp. 309
15.6.2 Multivariate-TBM via Barcodesp. 311
15.6.3 Connection to DTI Studyp. 311
15.7 Sparse Partial Correlationsp. 312
15.7.1 Partial Correlation Networkp. 312
15.7.2 Sparse Network Recoveryp. 314
15.7.3 Sparse Network Modelingp. 314
15.7.4 Application to Jacobian Determinantp. 315
15.7.5 Limitations of Sparse Partial Correlationsp. 316
15.8 Summaryp. 317
16 Sparse Shape Modelsp. 319
16.1 Introductionp. 319
16.2 Amygdala and Hippocampus Shape Modelsp. 320
16.3 Data Setp. 321
16.4 Sparse Shape Representationp. 322
16.5 Case Study: Subcortical Structure Modelingp. 324
16.5.1 Traditional Volumetric Analysisp. 325
16.5.2 Sparse Shape Analysisp. 325
16.6 Statistical Powerp. 326
16.6.1 Type-II Errorp. 326
16.6.2 Statistical Power for t-Testp. 327
16.7 Power Under Multiple Comparisonsp. 329
16.7.1 Type-I Error Under Multiple Comparisonsp. 330
16.7.2 Type-II Error Under Multiple Comparisonsp. 330
16.7.3 Statistical Power of Sparse Representationp. 333
16.8 Conclusionp. 333
17 Modeling Structural Brain Networksp. 335
17.1 Introductionp. 335
17.2 DTI Acquisition and Preprocessingp. 336
17.3 ¿-Neighbor Constructionp. 337
17.4 Node Degreesp. 340
17.5 Connected Componentsp. 341
17.6 ¿-Filtrationp. 344
17.7 Numerical Implementationp. 345
17.7.1 Fiber Bundle Visualizationp. 346
17.7.2 ¿-Neighbor Network Constructionp. 346
17.7.3 Network Computationp. 349
17.8 Discussionp. 349
18 Mixed Effects Modelsp. 351
18.1 Introductionp. 351
18.2 Mixed Effects Modelsp. 352
18.2.1 Fixed Effects Modelp. 353
18.2.2 Random Effects Modelp. 354
18.2.3 Restricted Maximum Likelihood Estimationp. 356
18.2.4 Case Study: Longitudinal Image Analysisp. 357
18.2.5 Functional Mixed Effects Modelsp. 360
Bibliographyp. 363
Indexp. 397
Go to:Top of Page