Skip to:Content
|
Bottom
Cover image for Control-oriented modelling and identification :  theory and practice
Title:
Control-oriented modelling and identification : theory and practice
Series:
IET control engineering series ; 80
Publication Information:
London : Institution of Engineering and Technology , c2015
Physical Description:
xiii, 394p. : ill. ; 24cm.
ISBN:
9781849196147
Added Author:

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
33000000009108 TJ213 C666 2015 Open Access Book Book
Searching...

On Order

Summary

Summary

This comprehensive book covers the state-of-the-art in control-oriented modelling and identification techniques. With contributions from leading researchers in the subject, Control-oriented Modelling and Identification: Theory and practice covers the main methods and tools available to develop advanced mathematical models suitable for control system design, including: object-oriented modelling and simulation; projection-based model reduction techniques; integrated modelling and parameter estimation; identification for robust control of complex systems; subspace-based multi-step predictors for predictive control; closed-loop subspace predictive control; structured nonlinear system identification; and linear fractional LPV model identification from local experiments using an H1-based glocal approach.

This book also takes a practical look at a variety of applications of advanced modelling and identification techniques covering spacecraft dynamics, vibration control, rotorcrafts, models of anaerobic digestion, a brake-by-wire racing motorcycle actuator, and robotic arms.

rotorcrafts, models of anaerobic digestion, a brake-by-wire racing motorcycle actuator, and robotic arms.rotorcrafts, models of anaerobic digestion, a brake-by-wire racing motorcycle actuator, and robotic arms.rotorcrafts, models of anaerobic digestion, a brake-by-wire racing motorcycle actuator, and robotic arms.


Table of Contents

Marco LoveraFrancesco CasellaPierre Vuiilemin and Charles Poussot-Vassal and Daniel Alazard AbstractMarco Lovera and Francesco CasellaTom Oomen and Maarien SteinbuchMarzia Cescon and Rolf JohanssonGijs van der Veen and Jan-Willem van Wingerden and Michel VerhaegenTyrone Vincent and Karneshwar Poolla and Carlo NovaraDaniel Vizer and Guillaume Mercère and Edouard Laroche and Olivier ProtMarco Lovera and Francesco CasellaCharles Poussot-Vassal and Clement Roos and Pierre Vuillemin and Olivier Cantinaud and Jean-Patrick LacosteGijs van der Veen and Jan-Willem van Wingerden and Michel VerhaegenMarco Bergamasco and Marco LoveraAlessandro Delia Bona and Gianni Ferretti and Elena Ficara and France sea MalpeiMatteo Corno and Fabio Todeschini and Giulio Panzani and Sergio M. SavaresiDaniel Vizer and Guillaume Mercère and Edouard Laroche and Olivier Prot
1 Introduction to control-oriented modellingp. 1
Abstractp. 1
1.1 Introductionp. 1
1.1.1 Detailed models for system simulationp. 2
1.1.2 Compact models for control designp. 3
1.1.3 Building models for control system synthesisp. 3
1.2 Overview of the bookp. 5
1.2.1 Part 1: theoryp. 5
1.2.2 Part 2: applicationsp. 6
2 Object-oriented modelling and simulation of physical systemsp. 9
Abstractp. 9
2.1 Introductionp. 9
2.2 Basic concepts and principlesp. 10
2.3 Modelicap. 14
2.4 Mathematical processing of OO modelsp. 20
2.5 Plant modelling, analysis and identificationp. 25
2.6 Control system performance verificationp. 26
2.7 Direct use of OO models for optimal controlp. 28
2.8 Conclusionsp. 32
Referencesp. 32
3 Projection-based model reduction techniquesp. 35
3.1 Introductionp. 35
3.1.1 Motivationsp. 35
3.1.2 Model reduction by projectionp. 38
3.2 Model reduction by truncationp. 41
3.2.1 State-space truncation and residualizationp. 41
3.2.2 Balanced truncationp. 45
3.2.3 Conclusionp. 57
3.3 Moment matching methodsp. 59
3.3.1 Moment matching through Krylov subspacesp. 59
3.3.2 H 2 optimal model reductionp. 66
3.3.3 Conclusionp. 74
3.4 Conclusionp. 74
Referencesp. 74
4 Integrated modelling and Parameter estimation: an LFR-Modelica approachp. 77
Abstractp. 77
4.1 Introductionp. 77
4.2 Applicable models and LFRsp. 78
4.2.1 Applicable plant modelsp. 78
4.2.2 Linear fractional representationsp. 79
4.3 Transformation of non-linear DAE models into LFRp. 80
4.3.1 Definitions and assumptionsp. 80
4.3.2 Re-ordering of the system equationsp. 82
4.3.3 Elimination of known parametersp. 83
4.3.4 Solving the system equationsp. 84
4.3.5 Formulation of the system equations as a cascaded connection of LFRsp. 85
4.3.6 Construction of the LFR of the DAEp. 87
4.3.7 Implementation of the algorithmp. 89
4.3.8 Simulation of the LFRp. 90
4.4 Application example: identification of LFR modelsp. 91
4.5 Conclusionsp. 98
Referencesp. 99
5 Identification for robust control of complex systems: algorithm and motion applicationp. 101
Abstractp. 101
5.1 Introductionp. 101
5.2 Coprime factor identification for refined uncertainty structures in robust controlp. 103
5.2.1 Robust control frameworkp. 103
5.2.2 Identification for robust control approachp. 105
5.2.3 Identifying robust-control-relevant coprime factorizationsp. 107
5.3 Generalized SK-iterations for closed-loop coprime factor identificationp. 108
5.3.1 Model parameterizationp. 108
5.3.2 Frequency domain identification involving l∞-norms via Lawson's algorithmp. 109
5.3.3 A closed-loop generalization of SK iterationsp. 110
5.4 Orthogonal polynomials w.r.t. a data-dependent discrete inner productp. 111
5.5 Experimental applicationp. 112
5.5.1 Experimental systemp. 112
5.5.2 Coprime factor identification resultsp. 115
5.5.3 Numerical conditioningp. 118
5.5.4 Illustration of robust-control-relevancep. 119
5.6 Conclusionsp. 121
Acknowledgmentsp. 121
Referencesp. 122
6 Subspace-based multi-step predictors for predictive controlp. 125
Abstractp. 125
6.1 Introductionp. 125
6.1.1 Model descriptionp. 126
6.1.2 Notationp. 127
6.1.3 Statement of the problemp. 128
6.2 Subspace-based linear multi-step predictorsp. 128
6.2.1 Computing projectionsp. 130
6.3 Examplep. 132
6.3.1 Diabetes mellitusp. 132
6.3.2 Experimental conditionsp. 133
6.3.3 Prediction strategyp. 133
6.3.4 Resultsp. 134
6.4 Discussion and conclusionsp. 139
Referencesp. 140
7 Closed-loop subspace predictive controlp. 143
Abstractp. 143
7.1 Introductionp. 143
7.2 Discrete-time identification frameworkp. 144
7.2.1 Preliminaries and notationp. 146
7.2.2 Data equationsp. 146
7.2.3 Relation to the ARX model structurep. 147
7.2.4 Closed-loop identification issuesp. 148
7.2.5 Estimating the predictor Markov parametersp. 148
7.2.6 Recursive solution of the parameter estimation problemp. 149
7.2.7 Using directional forgettingp. 150
7.3 Deriving the subspace predictorp. 151
7.4 Setting up the predictive control problemp. 152
7.4.1 Real time solution of the QPp. 154
7.4.2 Parameter selectionp. 154
7.5 Concluding remarksp. 155
7.5.1 Algorithm summaryp. 155
Referencesp. 155
8 Structured nonlinear system identificationp. 159
Abstractp. 159
8.1 Introductionp. 159
8.2 Specification of model structures using the LFRp. 160
8.2.1 Simple examples with linear Np. 163
8.2.2 Simple examples with nonlinear Np. 165
8.2.3 LFRs of block-oriented modelsp. 166
8.2.4 Discussion: L known or unknown?p. 167
8.3 Examples of model structure specificationp. 168
8.3.1 High-dimensional model representationp. 168
8.3.2 Automobile suspensionp. 169
8.3.3 Nonlinear friction: drill-stringp. 171
8.3.4 Linear parameter varying systemsp. 172
8.4 Properties of the LFR model structurep. 174
8.4.1 Measurabilityp. 174
8.4.2 Identifiabilityp. 175
8.4.3 Persistence of excitationp. 176
8.5 Identification algorithmsp. 176
8.5.1 Parametric estimatesp. 176
8.5.2 Nonparametric estimatesp. 178
8.6 Identification examplep. 183
Referencesp. 186
9 Linear fractional LPV model identification from local experiments using an Hco-based glocal approachp. 189
Abstractp. 189
9.1 Introductionp. 189
9.2 Identification methodp. 192
9.2.1 Problem formulation, definitions, and notationsp. 192
9.2.2 Determination of the structure of L(s, ¿(p), )p. 195
9.2.3 Woe-based optimization techniquep. 197
9.2.4 Computing the H∞-normp. 199
9.2.5 Minimizing the H∞-normp. 200
9.3 Identification resultsp. 202
9.3.1 System descriptionp. 202
9.3.2 Linear fractional LPV model identificationp. 203
9.3.3 Validationp. 207
9.4 Conclusionsp. 210
Referencesp. 211
10 Object-oriented modelling of spacecraft dynamics: tools and case studiesp. 215
Abstractp. 215
10.1 Introductionp. 215
10.2 The Modelica Space Flight Dynamics libraryp. 217
10.3 Structure of the spacecraft simulation modelsp. 220
10.3.1 Extended World modelp. 220
10.3.2 SpacecraftDynamics modelp. 221
10.3.3 Spacecraft modelp. 223
10.4 Case studiesp. 226
10.4.1 Assessing external disturbances via dynamic inversionp. 226
10.4.2 Magnetic detumbling for small satellite attitude controlp. 228
10.5 Concluding remarksp. 237
Referencesp. 237
11 Control-oriented aeroelastic BizJet low-order LFT modelingp. 241
Abstractp. 241
11.1 Introductionp. 241
11.1.1 Foreword on the Dassault-Aviation BizJet modelsp. 241
11.1.2 The BizJet aircraft aeroelatic control problemp. 242
11.1.3 Mathematical problem formulationp. 243
11.1.4 Structure and notationp. 245
11.2 Multi-LTI model approximation and interpolation algorithm overviewp. 245
11.3 Frequency-limited large-scale MIMO multi-LTI models approximationp. 247
11.3.1 Preliminaries on projection-based LTI model approximationp. 248
11.3.2 Large-scale single-LTI model approximation procedurep. 248
11.3.3 Large-scale multi-LTI models approximation procedurep. 250
11.3.4 Application to the BizJet modelp. 253
11.4 Interpolation of the reduced-order modelsp. 257
11.4.1 Choice of a suitable state-space formp. 257
11.4.2 Description of the interpolation methodp. 258
11.4.3 Generation of a simplified LFRp. 259
11.4.4 Application to the BizJet modelp. 261
11.5 Conclusionp. 263
Acknowledgmentsp. 266
Referencesp. 266
12 Active vibration control using subspace predictive controlp. 269
Abstractp. 269
12.1 Introductionp. 269
12.2 Experimental set-upp. 270
12.2.1 Control designp. 271
12.2.2 Notes on the implementationp. 271
12.3 Resultsp. 272
12.4 Conclusionsp. 273
Acknowledgementsp. 274
Referencesp. 274
13 Rotorcraft system identification: an integrated time-frequency-domain approachp. 275
Abstractp. 275
13.1 Introductionp. 275
13.2 Problem statement and preliminariesp. 277
13.3 An integrated time-frequency-domain approachp. 278
13.3.1 Continuous-time predictor-based subspace model identificationp. 279
13.3.2 From unstructured to structured models with an H∞ approachp. 284
13.4 Bootstrap uncertainty estimation in subspace identification methodsp. 285
13.5 Simulation study: model identification for the BO-105 helicopterp. 286
13.6 Concluding remarksp. 298
Referencesp. 299
14 Parameter identification of a reduced order LFT model of anaerobic digestionp. 301
Abstractp. 301
14.1 Introductionp. 301
14.2 ADM 1 modelp. 303
14.3 Modified AMOCO modelp. 307
14.4 LFT modelling and identificationp. 309
14.5 Parameter identification based on ADM 1 model simulation datap. 313
14.6 Parameter identification based on experimental datap. 319
14.7 Conclusion 323 Acknowledgementsp. 324
Appendix A LFT model for parameter identification based on ADMI model simulation datap. 324
Appendix B LFT model for parameter identification based on experimental datap. 325
Referencesp. 326
15 Modeling and parameter identification of a brake-by-wire actuator for racing motorcyclesp. 329
Abstractp. 329
15.1 Introductionp. 329
15.2 System descriptionp. 331
15.3 Brake-by-wire modelingp. 332
15.3.1 Electric domain modelingp. 333
15.3.2 Mechanical domain modelingp. 333
15.3.3 Hydraulic domainp. 337
15.4 Parameter identificationp. 347
15.4.1 Electric dynamics identificationp. 347
15.4.2 Motor mechanical dynamics - J mot and r vise - identificationp. 350
15.4.3 Friction model identificationp. 353
15.4.4 Final parameter identificationp. 353
15.5 Validation and analysisp. 354
15.5.1 Validationp. 354
15.5.2 Discussion on modeling choicesp. 358
15.6 Conclusionsp. 360
Referencesp. 361
16 LPV modeling and identification of a 2-DOF flexible robotic arm from local experiments using an H∞-based glocal approachp. 365
Abstractp. 365
16.1 Introductionp. 365
16.2 Modeling of a flexible robotic manipulatorp. 367
16.2.1 Description of the 2-DOF robotic manipulatorp. 367
16.2.2 Linear fractional LPV representation: a reminderp. 370
16.2.3 Nonlinear and linearized dynamic modelsp. 370
16.3 Identification resultsp. 375
16.4 Conclusionsp. 382
Referencesp. 383
Indexp. 387
Go to:Top of Page