Skip to:Content
|
Bottom
Cover image for Filter synthesis using genesys S/Filter
Title:
Filter synthesis using genesys S/Filter
Personal Author:
Publication Information:
Norwood, MA: Artech House, 2014
Physical Description:
xiv, 327 pages : illustrations ; 26 cm.
ISBN:
9781608078028

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010335003 TK7872.F5 R44 2014 Open Access Book Book
Searching...

On Order

Summary

Summary

This resource presents a practical guide to using Genesys software for microwave and RF filter design and synthesis. The focus of the book is common filter design problems and how to use direct synthesis to solve those problems. It also covers the application of S/Filter features to solving important and common filter problems.


Author Notes

Randall W. Rhea is a leading RF and microwave engineering expert with extensive industry experience working for Boeing Company, Goodyear Aerospace, and Scientific-Atlanta. He is the author of popular books in the field as well as numerous technical papers and tutorial CDs. He is a graduate of the University of Illinois and Arizona State University.


Table of Contents

Prefacep. xiii
Referencesp. xiv
1 Transmission Zerosp. 1
1.1 Determining TZ by Inspectionp. 1
1.2 Filter Degreep. 4
1.3 Canonical Realizationp. 4
1.4 Influence of TZs on the Responsep. 4
Referencesp. 6
2 All-Pole Lowpass and Highpassp. 7
2.1 Initial All-Pole Lowpass Parametersp. 7
2.2 Dual Topologiesp. 9
2.3 Chebyshev Approximation with Even Orderp. 10
2.4 All-Pole Highpass Examplep. 11
Referencesp. 12
3 Lowpass with Finite Zerosp. 13
3.1 Introductionp. 13
3.2 Alternative Topologiesp. 15
4 Conventional Bandpassp. 17
4.1 Bandpass Transformp. 17
4.2 Classification Symmetry or Antimetryp. 17
4.3 A 75- to 125-MHz Bandpassp. 18
4.4 A 96- to 104-MHz Bandpass Filterp. 19
4.5 Comparative Analysis of the Wide and Narrow Filtersp. 19
Referencep. 21
5 Extraction Sequencesp. 23
5.1 The Extraction Tabp. 23
Referencep. 27
6 Customized Bandpass Filtersp. 29
6.1 Custom Filter Specificationp. 29
6.2 Partial Extractions of FTZsp. 33
6.3 Inexact Extractionsp. 34
6.4 Inexact Examplep. 34
7 Norton Transformsp. 39
7.1 Norton Series Transformp. 39
7.2 Removing a Transformer with the Series Nortonp. 40
7.3 Norton Shunt Transformp. 43
7.4 Equal-Valued Inductor Bandpassp. 44
7.5 The History Tabp. 45
7.6 Equate All Lsp. 46
8 Bandpass with Resonatorsp. 47
8.1 Coupled Parallel-Resonator Filtersp. 47
8.1.1 Exact Design of a Parallel Resonator All-Pole Filterp. 49
8.1.2 Termination Coupling Transformsp. 51
8.1.3 Find Dual Transformp. 53
8.1.4 Exact Design with Like Coupling Elementsp. 55
8.1.5 The Equate All Shunt Ls or Shorted Stubs Transformp. 56
8.1.6 Termination-Coupled Bandpassp. 57
8.2 Coupled Series-Resonator Filtersp. 58
8.2.1 The Basic Series-Resonator Bandpassp. 58
8.2.2 Tubular Bandpassp. 59
8.2.3 Manufacture of the Tubular Bandpassp. 61
8.2.4 Generalized Series-Resonator Bandpassp. 61
8.2.5 Tunable Constant-Bandwidth Bandpassp. 63
Referencep. 67
9 TEM-Mode Resonatorsp. 69
9.1 Filter Insertion Lossp. 69
9.2 Filter Using 50-Ohm Coaxial Resonatorsp. 70
9.2.1 Lumped to Distributed Equivalentsp. 70
9.2.2 The Convert Using Advanced Tline Routinep. 72
9.3 Generalized Bandpass Using Ceramic Resonatorsp. 74
9.3.1 Creating Parallel Resonatorsp. 75
9.3.2 Shifting the Internal Impedance Levelp. 76
9.3.3 The Pi to Tee Transform: Increasing Coupling Capsp. 77
9.3.4 Converting the Parallel L-C to Coaxial Resonatorsp. 77
9.3.5 Optimizing the Valuesp. 77
9.4 Ceramic Bandpass with Two FTZsp. 78
Referencesp. 81
10 Piezoelectric Devicesp. 83
10.1 Quartz-Crystal Device Modelp. 83
10.1.1 Physical Form of the Quartz Crystalp. 83
10.1.2 Insertion Response of a Quartz Crystalp. 84
10.1.3 Modeling the Quartz Crystalp. 84
10.1.4 Calculating Model Parameters from the Responsep. 85
10.1.5 The Quartz-Crystal Model and Filter Designp. 86
10.2 Quartz-Crystal Filter Approximate Designp. 86
10.3 Nulling the Static Capacitancep. 90
10.4 Design of a Lower-Sideband Crystal Filterp. 91
10.5 Upper-Sideband Quartz-Crystal Filterp. 97
10.6 Filters with TZs Above and Below the Passbandp. 103
10.7 Wide-Bandwidth Quartz-Crystal Filtersp. 107
10.8 Very Wide-Bandwidth Quartz-Crystal Filtersp. 108
10.9 Ceramic-Piezoelectric Resonatorsp. 111
Referencep. 113
11 Symmetryp. 115
11.1 Physical Symmetryp. 115
11.1.1 A Lowpass Filter with FTZ Pairingsp. 115
11.1.2 A Bandpass Filter with FTZ Pairingsp. 117
11.2 Response Symmetryp. 119
11.2.1 All-Pole Symmetric Response Filtersp. 120
11.2.2 Generalized Bandpass with Symmetric Responsep. 120
11.2.3 Symmetry by FTZ Placementp. 123
11.3 Group-Delay Equalizationp. 124
Referencesp. 127
12 Matching with S/Filterp. 129
12.1 Matching Conceptsp. 129
12.1.1 Complex Conjugate Matchp. 130
12.1.2 Two-Element Matching Networksp. 130
12.2 Real Terminationsp. 132
12.2.1 Exploiting Extraction Sequencesp. 132
12.2.2 Exploiting Resonator Filtersp. 138
12.3 Complex Terminationsp. 139
12.3.1 Fano's Limitp. 139
12.3.2 Example: Power Amplifier Matchp. 140
12.3.3 Example: Broadband Antenna Matchp. 142
Referencesp. 144
13 Distributed Filtersp. 145
13.1 Comparing Distributed and Lumped Filtersp. 145
13.2 The Genesys Microwave Filter Modulep. 146
13.3 Distributed Synthesis Conceptsp. 149
13.3.1 TLEsp. 149
13.3.2 Richards Transformp. 150
13.3.3 Kuroda Identitiesp. 152
13.3.4 Ikeno Transformsp. 155
13.3.5 Kuroda-Minnis Transformp. 157
13.3.6 Half-Angle Transformp. 159
13.3.7 Interdigital Transformp. 161
13.3.8 Combline Transformp. 161
13.4 Lumped to Distributed Equivalent Transformsp. 162
13.5 Invertersp. 164
13.6 The Convert Using Advanced TLine Routinep. 165
13.7 Box Modesp. 166
13.8 Introduction to Distributed Filter Examplesp. 166
Referencesp. 167
14 Distributed Lowpass Filtersp. 169
14.1 Exact Methodsp. 169
14.1.1 Lowpass with Redundant UEsp. 169
14.1.2 Stub TLEs and Contributing Unit Elementsp. 175
14.1.3 Lowpass with Only Contributing UEs (Stepped-Z)p. 176
14.1.4 Generalized Lowpass Filterp. 179
14.2 Approximate Methodsp. 180
14.2.1 All-Pole: Equivalent Series TLE and Shorted Stubsp. 182
14.2.2 Stepped Impedance Lowpassp. 183
14.2.3 Generalized Lowpassp. 187
14.3 Size Reduction by Penetrationp. 190
14.4 Radial Stub Lowpassp. 192
14.5 Hybrid Lowpassp. 194
14.6 Distributed Lowpass Summaryp. 196
Referencep. 198
15 Distributed Bandstop Filtersp. 199
15.1 All-Pole with Stubs and Contributing UEsp. 199
15.1.1 Wide Bandwidth Bandstopp. 199
15.1.2 Moderate Bandwidth Bandstopp. 202
15.1.3 Narrow Bandstop with Ikeno Transformsp. 204
15.2 Generalized Narrowband Bandstopp. 205
16 Distributed Bandpass Filtersp. 211
16.1 Tutorials of Bandpass by Synthesisp. 211
16.1.1 Edge-Coupled Using Richards Transformp. 211
16.1.2 Edge-Coupled Using Invertersp. 216
16.1.3 Interdigital Using Invertersp. 218
16.2 Unique Bandpass Designsp. 224
16.2.1 Combline with Capacitive External Couplingp. 224
16.2.2 Miniature Bandpass with Contributing UEsp. 228
16.2.3 Narrow Bandwidth with UEs and an FTZp. 233
16.2.4 Penetrating Comblinep. 238
16.2.5 Minnis Class-D Bandpassp. 245
16.3 Hybrid Bandpassp. 248
16.3.1 Penetrating Combline with Capacitorsp. 248
16.3.2 Generalized Combline Hybridp. 249
16.3.3 Direct-Coupled Bandpass with Capacitorsp. 252
Referencesp. 258
17 Distributed Highpass Filtersp. 259
17.1 The Hybrid Highpassp. 259
17.1.1 The All-Pole Hybrid: Distributed Synthesisp. 259
17.1.2 The All-Pole Hybrid Highpass: Lumped Synthesisp. 261
17.1.3 The Hybrid Highpass with UEsp. 263
17.1.4 The Hybrid Highpass with an FTZp. 266
17.2 Purely Distributed Highpassp. 268
17.2.1 Highpass with Three TZs at DC and a UEp. 268
17.2.2 Highpass with Three TZs at DC and Four UEsp. 270
17.3 The Highpass Synthesized as a Bandpassp. 272
17.3.1 Hybrid Highpass from an Eighth-Degree Bandpassp. 272
17.3.2 Hybrid Highpass from a 10th-Degree Bandpassp. 275
18 Multiplexersp. 277
18.1 Contiguous Multiplexersp. 277
18.1.1 Contiguous Lowpass-Highpass Diplexerp. 277
18.1.2 Contiguous LP/BP/HP Multiplexerp. 279
18.2 Noncontiguous Multiplexersp. 281
18.2.1 Noncontiguous LP/HP Diplexer with FTZp. 281
18.2.2 Noncontiguous Distributed Combline Diplexerp. 284
Referencep. 287
19 Electromagnetic Simulationp. 289
19.1 Overviewp. 289
19.1.1 The EMPower Programp. 290
19.1.2 The Momentum Programp. 291
19.1.3 The EMPro Programp. 292
19.2 Box Modesp. 292
19.3 EM Simulation of Distributed Circuitsp. 295
19.3.1 EM Simulation of Penetrating Stepped-Z Lowpassp. 295
19.3.2 EM Simulation of a Combline Bandpassp. 298
19.3.3 EM Simulation of a Direct-Coupled Bandpassp. 300
19.4 Classic Method of Bandpass Designp. 302
19.4.1 Classic Method Fundamentalsp. 302
19.4.2 Example: Determining K Valuesp. 304
19.4.3 Example: Determining Q Valuesp. 307
19.4.4 Filter Example Using the Classic Methodp. 307
Referencesp. 310
Appendix A Example Summaryp. 313
A.1 Lumped Examplesp. 313
A.2 Distributed Examplesp. 315
A.3 Hybrid Examplesp. 316
A.4 Multiplexer Examplesp. 317
Constants, Symbols, and Initialismsp. 319
About the Authorp. 323
Indexp. 325
Go to:Top of Page