Skip to:Content
|
Bottom
Cover image for Adaptive filtering : fundamentals of least mean squares with MATLAB
Title:
Adaptive filtering : fundamentals of least mean squares with MATLAB
Physical Description:
xx, 343 pages : ill. ; 23 cm.
ISBN:
9781482253351
Title Subject:

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010341949 TK7872.F5 P683 2015 Open Access Book Book
Searching...

On Order

Summary

Summary

Adaptive filters are used in many diverse applications, appearing in everything from military instruments to cellphones and home appliances. Adaptive Filtering: Fundamentals of Least Mean Squares with MATLAB® covers the core concepts of this important field, focusing on a vital part of the statistical signal processing area--the least mean square (LMS) adaptive filter.

This largely self-contained text:

Discusses random variables, stochastic processes, vectors, matrices, determinants, discrete random signals, and probability distributions Explains how to find the eigenvalues and eigenvectors of a matrix and the properties of the error surfaces Explores the Wiener filter and its practical uses, details the steepest descent method, and develops the Newton's algorithm Addresses the basics of the LMS adaptive filter algorithm , considers LMS adaptive filter variants, and provides numerous examples Delivers a concise introduction to MATLAB®, supplying problems, computer experiments, and more than 110 functions and script files

Featuring robust appendices complete with mathematical tables and formulas, Adaptive Filtering: Fundamentals of Least Mean Squares with MATLAB® clearly describes the key principles of adaptive filtering and effectively demonstrates how to apply them to solve real-world problems.


Author Notes

Alexander D. Poularikas is chairman of the electrical and computer engineering department at the University of Alabama in Huntsville, USA. He previously held positions at University of Rhode Island, Kingston, USA and the University of Denver, Colorado, USA. He has published, coauthored, and edited 14 books and served as an editor-in-chief of numerous book series. A Fulbright scholar, lifelong senior member of the IEEE, and member of Tau Beta Pi, Sigma Nu, and Sigma Pi, he received the IEEE Outstanding Educators Award, Huntsville Section in 1990 and 1996. Dr. Poularikas holds a Ph.D from the University of Arkansas, Fayetteville, USA.


Table of Contents

Prefacep. xi
Authorp. xiii
Abbreviationsp. xv
MATLAB® Functions xvii
Chapter 1 Vectorsp. 1
1.1 Introductionp. 1
1.1.1 Multiplication by a Constant and Addition and Subtractionp. 1
1.1.1.1 Multiplication by a Constantp. 1
1.1.1.2 Addition and Subtractionp. 2
1.1.2 Unit Coordinate Vectorsp. 3
1.1.3 Inner Productp. 3
1.1.4 Distance between Two Vectorsp. 5
1.1.5 Mean Value of a Vectorp. 5
1.1.6 Direction Cosinesp. 7
1.1.7 The Projection of a Vectorp. 9
1.1.8 Linear Transformationsp. 10
1.2 Linear Independence. Vector Spaces, and Basis Vectorsp. 11
1.2.1 Orthogonal Basis Vectorsp. 13
Problemsp. 13
Hints-Suggestions-Solutionsp. 14
Chapter 2 Matricesp. 17
2.1 Introductionp. 17
2.2 General Types of Matricesp. 17
2.2.1 Diagonal, Identity, and Scalar Matricesp. 17
2.2.2 Upper and Lower Triangular Matricesp. 17
2.2.3 Symmetric and Exchange Matricesp. 18
2.2.4 Toeplitz Matrixp. 18
2.2.5 Hankel and Hermitianp. 18
2.3 Matrix Operationsp. 18
2.4 Determinant of a Matrixp. 21
2.4.1 Definition and Expansion of a Matrixp. 21
2.4.2 Trace of a Matrixp. 22
2.4.3 Inverse of a Matrixp. 22
2.5 Linear Equationsp. 24
2.5.1 Square Matrices (n × n)p. 24
2.5.2 Rectangular Matrices (np. 26
2.5.3 Rectangular Matrices (mp. 27
2.5.4 Quadratic and Hermitian Formsp. 29
2.6 Eigenvalues and Eigenvectorsp. 31
2.6.1 Eigenvectorsp. 32
2.6.2 Properties of Eigenvalues and Eigenvectorsp. 33
Problemsp. 36
Hints-Suggestions-Solutionsp. 37
Chapter 3 Processing of Discrete Deterministic Signals: Discrete Systemsp. 41
3.1 Discrete-Time Signalsp. 41
3.1.1 Time-Domain Representation of Basic Continuous and Discrete Signalsp. 41
3.2 Transform-Domain Representation of Discrete Signalsp. 42
3.2.1 Discrete-Time Fourier Transformp. 42
3.2.2 The Discrete FTp. 44
3.2.3 Properties of DFTp. 46
3.3 The z-Transformp. 48
3.4 Discrete-Time Systemsp. 52
3.4.1 Linearity and Shift Invariantp. 52
3.4.2 Causalityp. 52
3.4.3 Stabilityp. 52
3.4.3 Transform-Domain Representationp. 57
Problemsp. 60
Hints-Suggestions-Solutionsp. 61
Chapter 4 Discrete-Time Random Processesp. 63
4.1 Discrete Random Signals, Probability Distributions, and Averages of Random Variablesp. 63
4.1.1 Stationary and Ergodic Processesp. 65
4.1.2 Averages of RVp. 66
4.1.2.1 Mean Valuep. 66
4.1.2.2 Correlationp. 67
4.1.2.3 Covariancep. 69
4.2 Stationary Processesp. 71
4.2.1 Autocorrelation Matrixp. 71
4.2.2 Purely Random Process (White Noise)p. 74
4.2.3 Random Walkp. 74
4.3 Special Random Signals and pdf'sp. 75
4.3.1 White Noisep. 75
4.3.2 Gaussian Distribution (Normal Distribution)p. 75
4.3.3 Exponential Distributionp. 78
4.3.4 Lognormal Distributionp. 79
4.3.5 Chi-Square Distributionp. 80
4.4 Wiener-Khinchin Relationsp. 80
4.5 Filtering Random Processesp. 83
4.6 Special Types of Random Processesp. 85
4.6.1 Autoregressive Processp. 85
4.7 Nonparametric Spectra Estimationp. 88
4.7.1 Periodogramp. 88
4.7.2 Correlogramp. 90
4.7.3 Computation of Periodogram and Correlogram Using FFTp. 90
4.7.4 General Remarks on the Periodogramp. 91
4.7.4.1 Windowed Periodogramp. 93
4.7.5 Proposed Book Modified Method for Better Frequency Resolutionp. 95
4.7.5.1 Using Transformation of the rv'sp. 95
4.7.5.2 Blackman-Tukey Methodp. 96
4.7.6 Bartlett Periodogramp. 100
4.7.7 The Welch Methodp. 106
4.7.8 Proposed Modified Welch Methodsp. 109
4.7.8.1 Modified Method Using Different Types of Overlappingp. 109
4.7.8.2 Modified Welch Method Using Transformation of rv'sp. 111
Problemsp. 113
Hints-Solutions-Suggestionsp. 114
Chapter 5 The Wiener Filterp. 121
5.1 Introductionp. 121
5.2 The LS Techniquep. 121
5.2.1 Linear LSp. 122
5.2.2 LS Formulationp. 125
5.2.3 Statistical Properties of LSEsp. 130
5.2.4 The LS Approachp. 132
5.2.5 Orthogonality Principlep. 135
5.2.6 Corollaryp. 135
5.2.7 Projection Operatorp. 136
5.2.8 LS Finite Impulse Response Filterp. 138
5.3 The Mean-Square Errorp. 140
5.3.1 The FIR Wiener Filterp. 142
5.4 The Wiener Solutionp. 146
5.4.1 Orthogonality Conditionp. 148
5.4.2 Normalized Performance Equationp. 149
5.4.3 Canonical Form of the Error-Performance Surfacep. 150
5.5 Wiener Filtering Examplesp. 151
5.5.1 Minimum MSEp. 154
5.5.2 Optimum Filter (w 0 )p. 154
5.5.3 Linear Predictionp. 161
Problemsp. 162
Additional Problemsp. 164
Hints-Solutions-Suggestionsp. 16
Additional Problemsp. 16
Chapter 6 Eigenvalues of R x : Properties of the Error Surfacep. 171
6.1 The Eigenvalues of the Correlation Matrixp. 171
6.1.1 Karhunen-Loeve Transformationp. 173
6.2 Geometrical Properties of the Error Surfacep. 174
Problemsp. 178
Hints-Solutions-Suggestionsp. 178
Chapter 7 Newton's and Steepest Descent Methodsp. 183
7.1 One-Dimensional Gradient Search Methodp. 183
7.1.1 Gradient Search Algorithmp. 183
7.1.2 Newton's Method in Gradient Searchp. 185
7.2 Steepest Descent Algorithmp. 186
7.2.1 Steepest Descent Algorithm Applied to Wiener Filterp. 187
7.2.2 Stability (Convergence) of the Algorithmp. 188
7.2.3 Transient Behavior of MSEp. 190
7.2.4 Learning Curvep. 191
7.3 Newton's Methodp. 192
7.4 Solution of the Vector Difference Equationp. 194
Problemsp. 197
Edition Problemsp. 197
Hints-Solutions-Suggestionsp. 198
Additional Problemsp. 200
Chapter 8 The Least Mean-Square Algorithmp. 203
8.1 Introductionp. 203
8.2 The LMS Algorithmp. 203
8.3 Examples Using the LMS Algorithmp. 206
8.4 Performance Analysis of the LMS Algorithmp. 219
8.4.1 Learning Curvep. 221
8.4.2 The Coefficient-Error or Weighted-Error Correlation Matrixp. 224
R.4.3 Excess MSE and Misadjustmentp. 225
8.4.4 Stabilityp. 227
8.4.5 The LMS and Steepest Descent Methodsp. 228
8.5 Complex Representation of the LMS Algorithmp. 228
Problemsp. 231
Hints-Solutions-Suggestionsp. 232
Chapter 9 Variants of Least Mean-Square Algorithmp. 239
9.1 The Normalized Least Mean-Square Algorithmp. 239
9.2 Power Normalized LMSp. 244
9.3 Self-Correcting LMS Filterp. 248
9.4 The Sign-Error LMS Algorithmp. 250
9.5 The NLMS Sign-Error Algorithmp. 250
9.6 The Sign-Regressor LMS Algorithmp. 252
9.7 Self-Correcting Sign-Regressor LMS Algorithmp. 253
9.8 The Normalized Sign-Regressor LMS Algorithmp. 253
9.9 The Sign-Sign LMS Algorithmp. 254
9.10 The Normalized Sign-Sign LMS Algorithmp. 255
9.11 Variable Step-Size LMSp. 257
9.12 The Leaky LMS Algorithmp. 259
9.13 The Linearly Constrained LMS Algorithmp. 262
9.14 The Least Mean Fourth Algorithmp. 264
9.15 The Least Mean Mixed Norm LMS Algorithmp. 265
9.16 Short-Length Signal of the LMS Algorithmp. 266
9.17 The Transform Domain LMS Algorithmp. 267
9.17.1 Convergencep. 271
9.18 The Error Normalized Step-Size LMS Algorithmp. 272
9.19 The Robust Variable Step-Size LMS Algorithmp. 276
9.20 The Modified LMS Algorithmp. 282
9.21 Momentum LMSp. 283
9.22 The Block LMS Algorithmp. 285
9.23 The Complex LMS Algorithmp. 286
9.24 The Affine LMS Algorithmp. 288
9.25 The Complex Affine LMS Algorithmp. 290
Problemsp. 291
Hints-Solutions-Suggestionsp. 293
Appendix 1 Suggestions and Explanations for MATLAB Usep. 301
A1.1 Suggestions and Explanations for MATLAB Usep. 301
A1.1.1 Creating a Directoryp. 301
A1.1.2 Helpp. 301
A1.1.3 Save and Loadp. 302
A1.1.4 MATLAB as Calculatorp. 302
A1.1.5 Variable Namesp. 302
A1.1.6 Complex Numbersp. 302
A1.1.7 Array Indexingp. 302
A1.1.8 Extracting and Inserting Numbers in Arraysp. 303
A1.1.9 Vectorizationp. 303
A1.1.10 Windowingp. 304
A1.1.11 Matricesp. 304
A1.1.12 Producing a Periodic Functionp. 305
A1.1.13 Script Filesp. 305
A1.1.14 Functionsp. 305
A1.1.15 Complex Expressionsp. 306
A1.1.16 Axesp. 306
A1.1.17 2D Graphicsp. 306
A1.1.18 3D Plotsp. 308
A1.1.18.1 Mesh-Type Figuresp. 308
A1.2 General Purpose Commandsp. 309
A1.2.1 Managing Commands and Functionsp. 309
A1.2.2 Managing Variables and Workplacep. 309
A1.2.3 Operators and Special Charactersp. 309
A1.2.4 Control Flowp. 310
A1.3 Elementary Matrices and Matrix Manipulationp. 311
A1.3.1 Elementary Matrices and Arraysp. 311
A1.3.2 Matrix Manipulationp. 311
A1.4 Elementary Mathematical Functionsp. 312
A1.4.1 Elementary Functionsp. 312
A1.5 Numerical Linear Algebrap. 313
A1.5.1 Matrix Analysisp. 313
A1.6 Data Analysisp. 313
A1.6.1 Basic Operationsp. 313
A1.6.2 Filtering and Convolutionp. 313
A1.6.3 Fourier Transformsp. 314
A1.7 2D Plottingp. 314
A1.7.1 2D Plotsp. 314
Appendix 2 Matrix Analysisp. 317
A2.1 Definitionsp. 317
A2.2 Special Matricesp. 319
A2.3 Matrix Operation and Formulasp. 322
A2.4 Eigendecomposition of Matricesp. 325
A2.5 Matrix Expectationsp. 326
A2.6 Differentiation of a Scalar Function with respect to a Vectorp. 327
Appendix 3 Mathematical Formulasp. 329
A3.1 Trigonometric Identitiesp. 329
A3.2 Orthogonalityp. 330
A3.3 Summation of Trigonometric Formsp. 331
A3.4 Summation Formulasp. 331
A3.4.1 Finite Summation Formulasp. 331
A3.4.2 Infinite Summation Formulasp. 331
A3.5 Series Expansionsp. 332
A3.6 Logarithmsp. 332
A3.7 Some Definite Integralsp. 332
Appendix 4 Lagrange Multiplier Methodp. 335
Bibliographyp. 337
Indexp. 339
Go to:Top of Page