Skip to:Content
|
Bottom
Cover image for Heat Management in Integrated Circuits: On-chip and System-level Monitoring and Cooling
Title:
Heat Management in Integrated Circuits: On-chip and System-level Monitoring and Cooling
Personal Author:
Series:
Materials, Circuits and Devices Series ; 28
Physical Description:
253 pages : Illustrations ; 24 cm.
ISBN:
9781849199346
Abstract:
Heat Management in Integrated Circuits focuses on devices and materials that are intimately integrated on-chip (as opposed to in package or on-board) for the purposes of thermal monitoring and thermal management, i.e., cooling. The devices and circuits cover various designs used for the purpose of converting temperature to a digital measurement, heat to electricity, and actively biased circuits that reverse thermal gradients on chips for the purpose of cooling. The book includes fundamental operating principles that touch upon physics of materials that are used to construct sensing, harvesting, and cooling devices, which will be followed by circuit and system design aspects that enable successful functioning of these devices as an on-chip system. Finally, the author discusses the use of these devices and systems for thermal management and the role they play in enabling energy-efficient and sustainable high performance computing systems.

This essential overview covers the subject of thermal monitoring and management in integrated circuits. Specifically, it focuses on devices and materials that are intimately integrated on-chip (as opposed to in-package or on-board) for the purposes of thermal monitoring and thermal management.

"As integrated circuits get smaller and more complex, power densities are increasing, leading to more heat generation. Dealing with this heat is fast becoming the most important design bottleneck of current and future integrated circuits, where power envelopes are defined by the ability of the system to dissipate the generated heat. Thermal effects are forcing chip designers to apply conservative design margins, creating sub-optimal results. At a larger scale, cooling is the second most costly item in the electricity bills of well-designed high-performance computing and data centers, costing 30-50% of the total. Thermal monitoring and management in integrated circuits is therefore becoming increasingly important. This book covers thermal monitoring and management in integrated circuits, with a focus on devices and materials that are intimately integrated on-chip as opposed to in-package or on-board. The devices and circuits discussed include various designs used for the purpose of converting temperature to a digital measurement and actively biased circuits that reverse thermal gradients on chips for the purpose of cooling. Topics covered include an overview of heat in integrated circuits and systems, on-chip temperature sensing, dynamic thermal management, active cooling, and mitigating thermal events at the system-level and above"--Provided by publisher.

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010341470 TK7874 S43 2015 Open Access Book Book
Searching...

On Order

Summary

Summary

As integrated circuits get smaller and more complex, power densities are increasing, leading to more heat generation. Dealing with this heat is fast becoming the most important design bottleneck of current and future integrated circuits, where power envelopes are defined by the ability of the system to dissipate the generated heat. Thermal effects are forcing chip designers to apply conservative design margins, creating sub-optimal results. At a larger scale, cooling is the second most costly item in the electricity bills of well-designed high-performance computing and data centers, costing 30-50% of the total. Thermal monitoring and management in integrated circuits is therefore becoming increasingly important.

This book covers thermal monitoring and management in integrated circuits, with a focus on devices and materials that are intimately integrated on-chip as opposed to in-package or on-board. The devices and circuits discussed include various designs used for the purpose of converting temperature to a digital measurement and actively biased circuits that reverse thermal gradients on chips for the purpose of cooling. Topics covered include an overview of heat in integrated circuits and systems, on-chip temperature sensing, dynamic thermal management, active cooling, and mitigating thermal events at the system-level and above.

urpose of converting temperature to a digital measurement and actively biased circuits that reverse thermal gradients on chips for the purpose of cooling. Topics covered include an overview of heat in integrated circuits and systems, on-chip temperature sensing, dynamic thermal management, active cooling, and mitigating thermal events at the system-level and above.urpose of converting temperature to a digital measurement and actively biased circuits that reverse thermal gradients on chips for the purpose of cooling. Topics covered include an overview of heat in integrated circuits and systems, on-chip temperature sensing, dynamic thermal management, active cooling, and mitigating thermal events at the system-level and above.urpose of converting temperature to a digital measurement and actively biased circuits that reverse thermal gradients on chips for the purpose of cooling. Topics covered include an overview of heat in integrated circuits and systems, on-chip temperature sensing, dynamic thermal management, active cooling, and mitigating thermal events at the system-level and above.


Go to:Top of Page