Skip to:Content
|
Bottom
Cover image for Multiscale and multiresolution approaches in turbulence
Title:
Multiscale and multiresolution approaches in turbulence
Personal Author:
Publication Information:
London : Imperial College Press, 2006
ISBN:
9781860946509

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010123578 TA357.5.T87 S234 2006 Open Access Book Book
Searching...

On Order

Summary

Summary

This unique book gives a general unified presentation of the use of the multiscale/multiresolution approaches in the field of turbulence. The coverage ranges from statistical models developed for engineering purposes to multiresolution algorithms for the direct computation of turbulence. It provides the only available up-to-date reviews dealing with the latest and most advanced turbulence models (including LES, VLES, hybrid RANS/LES, DES) and numerical strategies.The book aims at providing the reader with a comprehensive description of modern strategies for turbulent flow simulation, ranging from turbulence modeling to the most advanced multilevel numerical methods.


Table of Contents

Prefacep. vii
1 A Brief Introduction to Turbulencep. 1
1.1 Common Features of Turbulent Flowsp. 1
1.1.1 Introductory conceptsp. 1
1.1.2 Randomness and coherent structure in turbulent flowsp. 3
1.2 Turbulent Scales and Complexity of a Turbulent Fieldp. 5
1.2.1 Basic equations of turbulent flowp. 5
1.2.2 Defining turbulent scalesp. 8
1.2.3 A glimpse at numerical simulations of turbulent flowsp. 13
1.3 Inter-scale Coupling in Turbulent Flowsp. 14
1.3.1 The energy cascadep. 14
1.3.2 Inter-scale interactionsp. 16
2 Turbulence Simulation and Scale Separationp. 21
2.1 Numerical Simulation of Turbulent Flowsp. 21
2.2 Reducing the Cost of the Simulationsp. 23
2.2.1 Scale separationp. 24
2.2.2 Navier-Stokes-based equations for the resolved quantitiesp. 24
2.2.3 Navier-Stokes-based equations for the unresolved quantitiesp. 26
2.3 The Averaging Approach: Reynolds-Averaged Numerical Simulation (RANS)p. 26
2.3.1 Statistical averagep. 26
2.3.2 Reynolds-Averaged Navier-Stokes equationsp. 28
2.3.3 Phase-Averaged Navier Stokes equationsp. 29
2.4 The Large Eddy Simulation Approach (LES)p. 31
2.4.1 Large and small scales separationp. 31
2.4.2 Filtered Navier-Stokes equationsp. 33
2.5 Multilevel/Multiresolution Methodsp. 35
2.5.1 Hierarchical multilevel decompositionp. 36
2.5.2 Practical example: the multiscale/multilevel LES decompositionp. 38
2.5.3 Associated Navier-Stokes-based equationsp. 39
2.5.4 Classification of existing multilevel methodsp. 41
2.5.4.1 Multilevel methods based on resolved-only wavenumbersp. 41
2.5.4.2 Multilevel methods based on higher wavenumbersp. 42
2.5.4.3 Adaptive multilevel methodsp. 43
2.6 Summaryp. 44
3 Statistical Multiscale Modellingp. 51
3.1 Generalp. 51
3.2 Exact Governing Equations for the Multiscale Problemp. 54
3.2.1 Basic equations in physical and spectral spacep. 54
3.2.2 The multiscale splittingp. 59
3.2.3 Governing equations for band-integrated approachesp. 60
3.3 Spectral Closures for Band-integrated Approachesp. 62
3.3.1 Local versus non-local transfersp. 62
3.3.2 Expression for the spectral fluxesp. 64
3.3.3 Dynamic spectral splittingp. 67
3.3.4 Turbulent diffusion termsp. 68
3.3.5 Viscous dissipation termp. 68
3.3.6 Pressure termp. 69
3.4 A Few Multiscale Models for Band-integrated Approachesp. 69
3.4.1 Multiscale Reynolds stress modelsp. 69
3.4.2 Multiscale eddy-viscosity modelsp. 70
3.5 Spectral Closures for Local Approachesp. 71
3.5.1 Local multiscale Reynolds stress modelsp. 71
3.5.1.1 Closures for the linear transfer termp. 72
3.5.1.2 Closures for the linear pressure termp. 73
3.5.1.3 Closures for the non-linear homogeneous transfer termp. 74
3.5.1.4 Closures for the non-linear non-homogeneous transfer termp. 76
3.5.2 Local multiscale eddy-viscosity modelsp. 77
3.6 Achievements and Open Issuesp. 78
4 Multiscale Subgrid Models: Self-adaptivityp. 87
4.1 Fundamentals of Subgrid Modellingp. 87
4.1.1 Functional and structural subgrid modelsp. 87
4.1.2 The Gabor-Heisenberg cursep. 88
4.2 Germano-type Dynamic Subgrid Modelsp. 93
4.2.1 Germano identityp. 93
4.2.1.1 Two-level multiplicative Germano Identityp. 93
4.2.1.2 Multilevel Germano Identityp. 95
4.2.1.3 Generalized Germano Identityp. 96
4.2.2 Derivation of dynamic subgrid modelsp. 96
4.2.3 Dynamic models and self-similarityp. 99
4.2.3.1 Turbulence self-similarityp. 99
4.2.3.2 Scale-separation operator self-similarityp. 106
4.3 Self-Similarity Based Dynamic Subgrid Modelsp. 108
4.3.1 Terracol-Sagaut procedurep. 109
4.3.2 Shao procedurep. 111
4.4 Variational Multiscale Methods and Related Subgrid Viscosity Modelsp. 114
4.4.1 Hughes VMS approach and extended formulationsp. 115
4.4.2 Implementation of the scale separation operatorp. 119
4.4.3 Bridging with hyperviscosity and filtered modelsp. 123
5 Structural Multiscale Subgrid Models: Small Scales Estimationsp. 125
5.1 Small-scale Reconstruction Methods: Deconvolutionp. 126
5.1.1 The velocity estimation modelp. 128
5.1.2 The Approximate Deconvolution Model (ADM)p. 134
5.2 Small Scales Reconstruction: Multifractal Subgrid-scale Modellingp. 141
5.2.1 General idea of the methodp. 141
5.2.2 Multifractal reconstruction of subgrid vorticityp. 142
5.2.2.1 Vorticity magnitude cascadep. 142
5.2.2.2 Vorticity orientation cascadep. 144
5.2.2.3 Reconstruction of the subgrid velocity fieldp. 146
5.3 Multigrid-based Decompositionp. 146
5.4 Global Multigrid Approaches: Cycling Methodsp. 151
5.4.1 The multimesh method of Vokep. 152
5.4.2 The multilevel LES method of Terracol et al.p. 153
5.4.2.1 Cycling procedurep. 154
5.4.2.2 Multilevel subgrid closuresp. 156
(a) Dynamic mixed multilevel closurep. 157
(b) Generalized multilevel closurep. 161
5.4.2.3 Examples of applicationp. 162
5.5 Zonal Multigrid/Multidomain Methodsp. 163
6 Unsteady Turbulence Simulation on Self-adaptive Gridsp. 173
6.1 Turbulence and Self-adaptivity: Expectations and Issuesp. 173
6.2 Adaptive Multilevel DNS and LESp. 178
6.2.1 Dynamic Local Multilevel LESp. 179
6.2.2 The Dynamic MultiLevel (DML) method of Dubois, Jauberteau and Temamp. 183
6.2.2.1 Spectral multilevel decompositionp. 184
6.2.2.2 Associated Navier-Stokes-based equationsp. 185
6.2.2.3 Quasi-static approximationp. 187
6.2.2.4 General description of the spectral multilevel methodp. 188
6.2.2.5 Dynamic estimation of the parameters i[subscript 1], i[subscript 2] and n[subscript V]p. 189
6.2.3 Dynamic Global Multilevel LESp. 191
6.3 Adaptive Wavelet-based Methods: CVS, SCALESp. 195
6.3.1 Wavelet decomposition: brief reminderp. 196
6.3.2 Coherency diagram of a turbulent fieldp. 198
6.3.2.1 Introduction to the coherency diagramp. 198
6.3.2.2 Threshold value and error controlp. 201
6.3.3 Adaptive Wavelet based Direct Numerical Simulationp. 203
6.3.4 Coherent Vortex Capturing methodp. 204
6.3.5 Stochastic Coherent Adaptive Large Eddy Simulationp. 205
6.4 DNS and LES with Optimal AMRp. 207
6.4.1 Error definition: surfacic versus volumic formulationp. 207
6.4.2 A posteriori error estimation and optimization loopp. 209
6.4.3 Numerical resultsp. 211
7 Global Hybrid RANS/LES Methodsp. 219
7.1 Bridging between Hybrid RANS/LES Methods and Multiscale Methodsp. 219
7.1.1 Concept: the effective filterp. 219
7.1.2 Eddy viscosity effective filterp. 221
7.1.3 Global hybrid RANS/LES methods as multiscale methodsp. 223
7.2 Motivation and Classification of RANS/LES Methodsp. 224
7.3 Unsteady Statistical Modelling Approachesp. 228
7.3.1 Unsteady RANS approachp. 228
7.3.2 The Semi-Deterministic Method of Ha Minhp. 231
7.3.3 The Scale Adaptive Simulationp. 237
7.3.4 The Turbulence-Resolving RANS approach of Travin et al.p. 241
7.4 Global Hybrid Approachesp. 243
7.4.1 The Approach of Spezialep. 244
7.4.2 Limited Numerical Scales (LNS)p. 247
7.4.2.1 General idea of LNSp. 247
7.4.2.2 Example of applicationp. 248
7.4.3 Blending methodsp. 249
7.4.3.1 General idea of blending methodsp. 249
7.4.3.2 Applicationsp. 251
7.4.4 Detached-Eddy Simulationp. 254
7.4.4.1 General ideap. 254
7.4.4.2 DES based on the SA modelp. 256
7.4.4.3 Possible extensions of standard SA-DESp. 259
7.4.4.4 Examplesp. 261
7.4.4.5 DES based on the [kappa] - [omega] modelp. 261
7.4.4.6 Extra-Large Eddy Simulation (XLES)p. 265
7.4.5 Grey Area-Grid Induced Separation (GIS)p. 267
7.4.6 Solutions against GISp. 270
7.4.6.1 Modifying the length scalep. 270
7.4.6.2 Zonal-DESp. 271
7.4.6.3 Shielding the boundary layer-Delayed Detached Eddy Simulationp. 273
7.5 Summaryp. 276
8 Zonal RANS/LES Methodsp. 283
8.1 Theoretical Setting of RANS/LES Couplingp. 285
8.1.1 Full-variables approachp. 285
8.1.1.1 Enrichment procedure from RANS to LESp. 287
8.1.1.2 Restriction procedure from LES to RANSp. 289
8.1.2 Perturbation approach: NLDEp. 290
8.2 Inlet Data Generation - Mapping Techniquesp. 294
8.2.1 Precursor calculationp. 295
8.2.2 Recycling methodsp. 298
8.2.3 Forcing conditionsp. 303
8.3 Turbulence Reconstruction for Inflow Conditionsp. 306
8.3.1 Random fluctuationsp. 307
8.3.2 Inverse Fourier transform techniquep. 307
8.3.3 Random Fourier modes synthesizationp. 309
8.3.4 Synthetic turbulencep. 315
Bibliographyp. 321
Indexp. 339
Go to:Top of Page