Skip to:Content
|
Bottom
Cover image for The detonation phenomenon
Title:
The detonation phenomenon
Personal Author:
Publication Information:
London : Cambridge University Press, 2008
Physical Description:
xii, 388 p. : ill. ; 26 cm.
ISBN:
9780521897235

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010205227 QC168.85.D46 L43 2008 Open Access Book Book
Searching...

On Order

Summary

Summary

This book introduces the detonation phenomenon in explosives. It is ideal for engineers and graduate students with a background in thermodynamics and fluid mechanics. The material is mostly qualitative, aiming to illustrate the physical aspects of the phenomenon. Classical idealized theories of detonation waves are presented first. These permit detonation speed, gas properties ahead of and behind the detonation wave, and the distribution of fluid properties within the detonation wave itself to be determined. Subsequent chapters describe in detail the real unstable structure of a detonation wave. One-, two-, and three-dimensional computer simulations are presented along with experimental results using various experimental techniques. The important effects of confinement and boundary conditions and their influence on the propagation of a detonation are also discussed. The final chapters cover the various ways detonation waves can be formed and provide a review of the outstanding problems and future directions in detonation research.


Table of Contents

Prefacep. xi
1 Introductionp. 1
1.1 Deflagrations and Detonationsp. 1
1.2 Discovery of the Detonation Phenomenonp. 4
1.3 Chapman-Jouguet Theoryp. 5
1.4 The Detonation Structurep. 7
1.5 Dynamics of the Detonation Productsp. 10
1.6 Stability of the Detonation Frontp. 11
1.7 Influence of Boundary Conditionsp. 12
1.8 Deflagration-to-Detonation Transition (DDT)p. 15
1.9 Direct Initiationp. 17
1.10 Outstanding Problemsp. 19
Bibliographyp. 22
2 Gasdynamic Theory of Detonations and Deflagrationsp. 26
2.1 Introductionp. 26
2.2 Basic Equationsp. 27
2.3 Rayleigh Line and Hugoniot Curvep. 29
2.4 The Tangency (Chapman-Jouguet) Solutionsp. 32
2.5 Entropy Variation along the Hugoniot Curvep. 35
2.6 Downstream Flow Conditionsp. 36
2.7 The Chapman-Jouguet Criterionp. 38
2.8 Rankine-Hugoniot Relationsp. 42
2.9 Deflagrationsp. 46
2.10 Closing Remarksp. 50
Bibliographyp. 52
3 Dynamics of Detonation Productsp. 53
3.1 Introductionp. 53
3.2 Basic Equationsp. 54
3.3 Diverging Cylindrical and Spherical CJ Detonationsp. 57
3.4 Piston Motion behind Diverging Detonationsp. 59
3.5 Diverging Detonations in a Nonuniform Mediump. 65
3.6 Closing Remarksp. 71
Bibliographyp. 72
4 Laminar Structure of Detonationsp. 73
4.1 Introductionp. 73
4.2 The ZND Structure for an Ideal Gasp. 75
4.3 Pathological Detonationsp. 83
4.4 Nonideal Detonationsp. 89
4.5 Closing Remarksp. 95
Bibliographyp. 97
5 Unstable Detonations: Numerical Descriptionp. 98
5.1 Introductionp. 98
5.2 Linear Stability Analysisp. 99
5.3 Normal-Mode Linear Analysisp. 99
5.4 Asymptotic Modeling of Unstable Detonationp. 101
5.5 High Activation Energy and the Newtonian Limitp. 102
5.6 Asymptotic Analysis of Multidimensional Instabilities and Cell Spacing Predictionp. 103
5.7 Asymptotic Limit of Large Overdrivep. 105
5.8 Asymptotic Limit of Weak Heat Releasep. 105
5.9 Direct Numerical Simulation of Unstable Detonationp. 106
5.10 One-Dimensional Instability (One-Step Reaction Rate Model)p. 108
5.11 Effect of Chemistry on Stabilityp. 118
5.12 Two-Dimensional Cellular Instabilityp. 128
5.13 Closing Remarksp. 139
Bibliographyp. 141
6 Unstable Detonations: Experimental Observationsp. 147
6.1 Introductionp. 147
6.2 The Spinning Detonation Phenomenonp. 148
6.3 The Manson-Taylor-Fay-Chu Acoustic Theory of Spinning Detonationp. 152
6.4 Structure of the Spinning Detonation Frontp. 157
6.5 Multiheaded Detonationsp. 170
6.6 Cellular Structure in Other Geometriesp. 178
6.7 Cell Size and Chemistryp. 194
6.8 Closing Remarksp. 199
Bibliographyp. 201
7 Influence of Boundary Conditionsp. 204
7.1 Introductionp. 204
7.2 Velocity Deficitp. 205
7.3 Detonations in Rough-Walled Tubesp. 214
7.4 Acoustically Absorbing Wallsp. 227
7.5 Detonation Limitsp. 235
7.6 Closing Remarksp. 245
Bibliographyp. 247
8 Deflagration-to-Detonation Transitionp. 250
8.1 Introductionp. 250
8.2 Gasdynamics of Deflagration Wavesp. 252
8.3 Salient Features of the Transition Phenomenonp. 258
8.4 Flame Acceleration Mechanismsp. 262
8.5 Onset of Detonationp. 277
8.6 Criterion for Transition from Deflagration to Detonationp. 286
8.7 Closing Remarksp. 293
Bibliographyp. 295
9 Direct Initiation of Detonationsp. 297
9.1 Introductionp. 297
9.2 Blast Initiation (Experimental Observations)p. 299
9.3 Numerical Simulation of Blast Initiationp. 314
9.4 The Critical Tube Diameterp. 327
9.5 Other Means of Direct Initiationp. 339
9.6 Theory of Blast Initiationp. 349
9.7 The SWACER Mechanismp. 360
9.8 Closing Remarksp. 368
Bibliographyp. 370
Epiloguep. 373
Indexp. 377
Go to:Top of Page