Cover image for The logic of logistics : theory, algorithms, and applications for logistics and supply chain management
Title:
The logic of logistics : theory, algorithms, and applications for logistics and supply chain management
Personal Author:
Series:
Springer series in operations research
Edition:
2nd ed.
Publication Information:
New York, NY : Springer, 2005
ISBN:
9780387221991

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000004593251 HD38.5 B72 2005 Open Access Book Book
Searching...
Searching...
30000003581075 HD38.5 B72 2005 Open Access Book Book
Searching...
Searching...
30000010077083 HD38.5 B72 2005 Open Access Book Book
Searching...
Searching...
30000010077082 HD38.5 B72 2005 Open Access Book Book
Searching...

On Order

Summary

Summary

Fierce competition in today's global market provides a powerful motivation for developing ever more sophisticated logistics systems. This book, written for the logistics manager and researcher, presents a survey of the modern theory and application of logistics. The goal of the book is to present the state-of-the-art in the science of logistics management. this field that many practitioners and researchers will find makes an invaluable companion to their work.


Table of Contents

Prefacep. v
1 Introductionp. 1
1.1 What Is Logistics Management?p. 1
1.2 Managing Cost and Uncertaintyp. 3
1.3 Examplesp. 4
1.4 Modeling Logistics Problemsp. 7
1.5 Logistics in Practicep. 7
1.6 Evaluation of Solution Techniquesp. 9
1.7 Additional Topicsp. 10
1.8 Book Overviewp. 11
I Performance Analysis Techniquesp. 12
2 Convexity and Supermodularityp. 13
2.1 Introductionp. 13
2.2 Convex Analysisp. 13
2.2.1 Convex Sets and Convex Functionsp. 13
2.2.2 Continuity and Differentiability Propertiesp. 16
2.2.3 Characterization of Convex Functionsp. 20
2.2.4 Convexity and Optimizationp. 23
2.3 Supermodularityp. 24
2.4 Exercisesp. 31
3 Worst-Case Analysisp. 33
3.1 Introductionp. 33
3.2 The Bin-Packing Problemp. 34
3.2.1 First-Fit and Best-Fitp. 36
3.2.2 First-Fit Decreasing and Best-Fit Decreasingp. 39
3.3 The Traveling Salesman Problemp. 40
3.3.1 A Minimum Spanning Tree Based Heuristicp. 41
3.3.2 The Nearest Insertion Heuristicp. 42
3.3.3 Christofides' Heuristicp. 46
3.3.4 Local Search Heuristicsp. 49
3.4 Exercisesp. 50
4 Average-Case Analysisp. 55
4.1 Introductionp. 55
4.2 The Bin-Packing Problemp. 56
4.3 The Traveling Salesman Problemp. 61
4.4 Exercisesp. 66
5 Mathematical Programming Based Boundsp. 69
5.1 Introductionp. 69
5.2 An Asymptotically Tight Linear Programp. 70
5.3 Lagrangian Relaxationp. 73
5.4 Lagrangian Relaxation and the Traveling Salesman Problemp. 75
5.4.1 The 1-Tree Lower Boundp. 76
5.4.2 The 1-Tree Lower Bound and Lagrangian Relaxationp. 77
5.5 The Worst-Case Effectiveness of the 1-tree Lower Boundp. 78
5.6 Exercisesp. 82
II Inventory Modelsp. 84
6 Economic Lot Size Models with Constant Demandsp. 85
6.1 Introductionp. 85
6.1.1 The Economic Lot Size Modelp. 85
6.1.2 The Finite Horizon Modelp. 87
6.1.3 Power of Two Policiesp. 89
6.2 Multi-Item Inventory Modelsp. 91
6.2.1 Introductionp. 91
6.2.2 Notation and Assumptionsp. 93
6.2.3 Worst-Case Analysesp. 93
6.3 A Single Warehouse Multi-Retailer Modelp. 98
6.3.1 Introductionp. 98
6.3.2 Notation and Assumptionsp. 98
6.4 Exercisesp. 103
7 Economic Lot Size Models with Varying Demandsp. 105
7.1 The Wagner-Whitin Modelp. 105
7.2 Models with Capacity Constraintsp. 111
7.3 Multi-Item Inventory Modelsp. 114
7.4 Exercisesp. 116
8 Stochastic Inventory Modelsp. 119
8.1 Introductionp. 119
8.2 Single Period Modelsp. 120
8.2.1 The Modelp. 120
8.3 Finite Horizon Modelsp. 121
8.3.1 Model Descriptionp. 121
8.3.2 K-Convex Functionsp. 123
8.3.3 Main Resultsp. 126
8.4 Quasiconvex Loss Functionsp. 127
8.5 Infinite Horizon Modelsp. 130
8.6 Multi-Echelon Systemsp. 137
8.7 Exercisesp. 139
9 Integration of Inventory and Pricingp. 141
9.1 Introductionp. 141
9.2 Single Period Modelsp. 142
9.3 Finite Horizon Modelsp. 145
9.3.1 Model Descriptionp. 145
9.3.2 Symmetric K-Convex Functionsp. 148
9.3.3 Additive Demand Functionsp. 153
9.3.4 General Demand Functionsp. 155
9.3.5 Special Case: Zero Fixed Ordering Costp. 156
9.3.6 Extensions and Challengesp. 157
9.4 Risk Averse Inventory Modelsp. 158
9.4.1 Expected utility risk averse modelsp. 159
9.4.2 Exponential utility risk averse modelsp. 161
9.5 Exercisesp. 163
III Design and Coordination Modelsp. 166
10 Procurement Contractsp. 167
10.1 Introductionp. 167
10.2 Wholesale Contractsp. 169
10.3 Buy Back Contractsp. 171
10.4 Revenue Sharing Contractsp. 172
10.5 Portfolio Contractsp. 173
10.6 Exercisesp. 177
11 Supply Chain Planning Modelsp. 179
11.1 Introductionp. 179
11.2 The Shipper Problemp. 180
11.2.1 The Shipper Modelp. 181
11.2.2 A Set-Partitioning Approachp. 182
11.2.3 Structural Propertiesp. 186
11.2.4 Solution Procedurep. 187
11.2.5 Computational Resultsp. 190
11.3 Safety Stock Optimizationp. 194
11.4 Exercisep. 196
12 Facility Location Modelsp. 199
12.1 Introductionp. 199
12.2 An Algorithm for the p-Median Problemp. 200
12.3 An Algorithm for the Single-Source Capacitated Facility Location Problemp. 204
12.4 A Distribution System Design Problemp. 207
12.5 The Structure of the Asymptotic Optimal Solutionp. 212
12.6 Exercisesp. 213
IV Vehicle Routing Modelsp. 215
13 The Capacitated VRP with Equal Demandsp. 217
13.1 Introductionp. 217
13.2 Worst-Case Analysis of Heuristicsp. 218
13.3 The Asymptotic Optimal Solution Valuep. 223
13.4 Asymptotically Optimal Heuristicsp. 225
13.5 Exercisesp. 228
14 The Capacitated VRP with Unequal Demandsp. 229
14.1 Introductionp. 229
14.2 Heuristics for the CVRPp. 229
14.3 Worst-Case Analysis of Heuristicsp. 233
14.4 The Asymptotic Optimal Solution Valuep. 236
14.4.1 A Lower Boundp. 237
14.4.2 An Upper Boundp. 240
14.5 Probabilistic Analysis of Classical Heuristicsp. 242
14.5.1 A Lower Boundp. 244
14.5.2 The UOP([alpha]) Heuristicp. 246
14.6 The Uniform Modelp. 248
14.7 The Location-Based Heuristicp. 250
14.8 Rate of Convergence to the Asymptotic Valuep. 253
14.9 Exercisesp. 254
15 The VRP with Time Window Constraintsp. 257
15.1 Introductionp. 257
15.2 The Modelp. 257
15.3 The Asymptotic Optimal Solution Valuep. 259
15.4 An Asymptotically Optimal Heuristicp. 265
15.4.1 The Location-Based Heuristicp. 265
15.4.2 A Solution Method for CVLPTWp. 267
15.4.3 Implementationp. 269
15.4.4 Numerical Studyp. 269
15.5 Exercisesp. 272
16 Solving the VRP Using a Column Generation Approachp. 275
16.1 Introductionp. 275
16.2 Solving a Relaxation of the Set-Partitioning Formulationp. 276
16.3 Solving the Set-Partitioning Problemp. 280
16.3.1 Identifying Violated Clique Constraintsp. 282
16.3.2 Identifying Violated Odd Hole Constraintsp. 282
16.4 The Effectiveness of the Set-Partitioning Formulationp. 283
16.4.1 Motivationp. 284
16.4.2 Proof of Theorem 8.4.1p. 285
16.5 Exercisesp. 288
V Logistics Algorithms in Practicep. 292
17 Network Planningp. 293
17.1 Introductionp. 293
17.2 Network Designp. 294
17.3 Strategic Safety Stockp. 305
17.4 Resource Allocationp. 313
17.5 Summaryp. 317
17.6 Exercisesp. 318
18 A Case Study: School Bus Routingp. 319
18.1 Introductionp. 319
18.2 The Settingp. 320
18.3 Literature Reviewp. 322
18.4 The Problem in New York Cityp. 323
18.5 Distance and Time Estimationp. 325
18.6 The Routing Algorithmp. 327
18.7 Additional Constraints and Featuresp. 331
18.8 The Interactive Modep. 333
18.9 Data, Implementation and Resultsp. 334
19 Referencesp. 337
Indexp. 350