Cover image for Biotechnology for odor and air pollution control
Title:
Biotechnology for odor and air pollution control
Publication Information:
Berlin : Springer-Verlag Berlin, 2005
ISBN:
9783540233121

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000004301747 TD192.5 B56 2005 Open Access Book Book
Searching...
Searching...
30000010179418 TD192.5 B56 2005 Open Access Book Book
Searching...

On Order

Summary

Summary

Here is the first book on biotechnological processes for controlling odor and air pollution emanating from industrial and municipal airstreams. Authors from academia and industry describe biotechnological methods ranging from those in laboratory stages to pilot evaluation to full-scale process implementation. In addition to the basic microbiology and engineering, the design, modeling, and control of bioreactors are discussed in detail.


Table of Contents

Zarook Shareefdeen and Brian Herner and Ajay SinghRodney L. AldrichSergio Revah and Juan M. Morgan-SagastumeRakesh Govind and Sandeep NarayanAjay Singh and Owen WardIndrani Datta and D. Grant AllenMarc A. Deshusses and David GabrielAjay Singh and Zarook Shareefdeen and Owen P. WardMark W. FitchMarc A. Deshusses and Zarook ShareefdeenRoger Cudmore and Peter GostomskiMadjid MohseniPierre Le Cloirec and Yves Andrès and Claire Gérente and Pascaline PréVladimir Popov and Vitaliy ZhukovTodd S. WebsterBart KraakmanFethiye Ozis and Arash Bina and Joseph S. Devinny
Part I Introduction and Basic Theory
1 Biotechnology for Air Pollution Control - an Overviewp. 3
1.1 Introductionp. 3
1.2 Methods of Odor and VOC Controlp. 3
1.3 Biological Reactorsp. 4
1.3.1 Bioreactor Mediap. 4
1.3.2 Microbiologyp. 5
1.3.3 Types of Bioreactorsp. 7
1.4 Modeling and Design of Bioreactorsp. 8
1.4.1 Modeling of Bioreactorsp. 8
1.4.2 Design of Bioreactorsp. 9
1.5 Types of Contaminantsp. 10
1.6 Case Studiesp. 11
1.7 Conclusionp. 12
Referencesp. 12
2 Environmental Laws and Regulations Related to Odor and Waste Gas Contaminantsp. 17
2.1 Introductionp. 17
2.2 Control of VOCsp. 18
2.3 Control of Odor-Causing Chemicalsp. 20
2.4 Brief Overview of Odor Restrictions Around the Worldp. 21
2.4.1 The United States of Americap. 21
2.4.2 Japanp. 24
2.4.3 Chinap. 24
2.4.4 The United Kingdomp. 24
2.4.5 Canadap. 25
2.5 Conclusionsp. 26
Referencesp. 28
3 Methods of Odor and VOC Controlp. 29
3.1 VOCs and Odor Definitionp. 29
3.2 Methods for VOCs and Odor Controlp. 30
3.3 Physical-chemical Methodsp. 35
3.3.1 Dilutionp. 35
3.3.2 Condensationp. 35
3.3.3 Membranesp. 36
3.3.4 UV Oxidationp. 36
3.3.5 Plasmap. 37
3.3.6 Adsorptionp. 38
3.3.7 Combustion (Flares, Thermal and Catalytic Incinerators)p. 38
3.3.8 Maskingp. 40
3.3.9 Caustic Scrubbingp. 40
3.3.10 Regenerative Gas Scrubbingp. 41
3.3.11 Chemical Precipitationp. 42
3.3.12 Chlorine Oxidationp. 42
3.3.13 Ozone Oxidationp. 42
3.3.14 Potassium Permanganate Oxidationp. 42
3.3.15 Catalytic Oxidation with Fe 3+ (LO-CAT Process)p. 43
3.3.16 Hydrogen Peroxide Oxidationp. 43
3.3.17 Oxidation with FeOp. 43
3.4 Biological Methodsp. 43
3.4.1 Terminologyp. 45
3.4.2 Mechanismsp. 47
3.4.3 The Biological Phasep. 48
3.5 Types of Bioreactorsp. 53
3.5.1 Biofilterp. 54
3.5.2 Biotrickling Filtersp. 55
3.5.3 Rotating Biological Contactorsp. 56
3.5.4 Bioscrubbersp. 56
3.5.5 Membrane Bioreactorsp. 57
3.5.6 Suspended Cell Bioreactorp. 58
3.6 Conclusionsp. 59
Referencesp. 60
4 Selection of Bioreactor Media for Odor Controlp. 65
4.1 Introductionp. 65
4.2 Diffusive Versus Convective Mediap. 66
4.3 Naturally Bioactive Mediap. 68
4.4 Synthetic Mediap. 71
4.5 Randomly Packed Versus Structured Biomediap. 83
4.6 Biofilter Versus Biotrickling Filterp. 85
4.7 Experimental Studies on Diffusive Biofilter Mediap. 86
4.7.1 Experimental Setupp. 86
4.7.2 Analytical Procedurep. 87
4.7.3 Results and Discussionp. 88
4.8 Experimental Studies on Convective Biofilter Mediap. 90
4.9 Studies on Encapsulated Biomass and Membrane Biofiltersp. 92
4.10 Conclusionsp. 94
Appendixp. 95
Referencesp. 99
5 Microbiology of Bioreactors for Waste Gas Treatmentp. 101
5.1 Introductionp. 101
5.2 Microbial Communities Involved in Waste Gas Treatmentp. 102
5.3 The Nature of Microbial Biofilmsp. 104
5.4 Biodegradation of Air Pollutantsp. 106
5.4.1 Biokineticsp. 106
5.4.2 Biodegradation of Organic Compoundsp. 107
5.4.3 Biodegradation of Inorganic Compoundsp. 108
5.5 Factors Affecting Microbial Degradation of Air Contaminantsp. 110
5.5.1 Bioavailabilityp. 110
5.5.2 Nutritionalp. 111
5.5.3 Environmentalp. 113
5.6 Genetic Approaches for Improved Microorganismsp. 114
5.7 Monitoring of Microbial Processesp. 115
5.8 Conclusionsp. 116
Referencesp. 116
Part II Biological Reactor Technologies
6 Biofilter Technologyp. 125
6.1 Introductionp. 125
6.2 Overall Process Descriptionp. 125
6.3 Biofiltration Terminologyp. 126
6.3.1 Empty Bed Residence Timep. 127
6.3.2 Surface (or Volumetric) and Mass Loading Ratep. 127
6.4 Mechanism of Operationp. 128
6.4.1 Transfer and Partitioning of Contaminants to the Biofilmp. 128
6.4.2 Biodegradationp. 129
6.5 Characterizing Biofilter Performancep. 129
6.5.1 Removal Efficiencyp. 129
6.5.2 Elimination Capacityp. 130
6.5.3 Maximum Elimination Capacityp. 130
6.6 Factors Affecting Biofilter Performancep. 131
6.6.1 Packing Mediap. 131
6.6.2 Moisture Contentp. 131
6.6.3 Temperaturep. 132
6.6.4 Oxygen Contentp. 132
6.6.5 pHp. 133
6.6.6 Nutrientsp. 133
6.6.7 Pressure Dropp. 133
6.6.8 Medium Depthp. 134
6.6.9 Waste Gas Pretreatmentp. 135
6.6.10 Maintenancep. 135
6.7 Microbiology of Biofiltersp. 135
6.8 Advantages and Disadvantagesp. 136
6.9 Applications of Biofiltersp. 137
6.10 Conclusionsp. 139
Referencesp. 140
7 Biotrickling Filter Technologyp. 147
7.1 Introductionp. 147
7.2 Biotrickling Filter Design and Operationp. 150
7.3 Conversion of Chemical Scrubbers to Biotrickling Filtersp. 152
7.3.1 First Approach to the Conversionp. 153
7.3.2 General Procedure to Convert Full-Scale Chemical Scrubbersp. 155
7.3.3 H 2 S Treatment of Converted Chemical Scrubbers at OCSDp. 161
7.4 Conclusionsp. 166
Referencesp. 166
8 Bioscrubber Technologyp. 169
8.1 Introductionp. 169
8.2 Bioscrubbersp. 170
8.3 Bioscrubber Designp. 173
8.3.1 Mechanism for Odorous Gas Treatment by Bioscrubbers173
8.3.2 The Absorberp. 174
8.3.3 The Bioreactorp. 177
8.3.4 Variations in Bioscrubber Designsp. 178
8.4 Bioprocess Control in Bioscrubbersp. 180
8.4.1 Microbiologyp. 180
8.4.2 Nutrientsp. 182
8.4.3 Oxygenp. 182
8.4.4 pH and Temperaturep. 183
8.4.5 Sludge Accumulation and Disposalp. 183
8.5 Application of Bioscrubbersp. 184
8.5.1 Waste Gases from Wastewater Treatment Plantp. 184
8.5.2 Aerobic and Anaerobic Gas Treatmentp. 187
8.5.3 Treatment of Flue Gasesp. 187
8.5.4 Treatment of Waste Gas from Fish Feed Factoryp. 188
8.5.5 Treatment of Waste Gas Containing VOCsp. 188
8.6 Conclusion and Future Directionsp. 189
Referencesp. 190
9 Membrane Bioreactor Technologyp. 195
9.1 Introductionp. 195
9.2 Membrane Bioreactor Designp. 195
9.2.1 Mechanismp. 197
9.2.2 Membranesp. 198
9.2.3 Materialsp. 199
9.3 Reactor Configurationp. 201
9.4 Operating Resultsp. 201
9.4.1 Loading and Elimination Capacityp. 201
9.4.2 Transient Loads and Agingp. 205
9.4.3 Biofilm Thicknessp. 206
9.4.4 Heatp. 206
9.5 Models of Membrane Biofiltrationp. 206
9.5.1 Mass Transferp. 206
9.5.2 Biodegradationp. 208
9.5.3 Model Resultsp. 209
9.6 Conclusionsp. 209
Referencesp. 209
10 Modeling of Biofilters and Biotrickling Filters for Odor and VOC Control Applicationsp. 213
10.1 Introduction to Modelingp. 213
10.1.1 General Model Conceptsp. 214
10.1.2 Importance of Modeling in Design and Operationp. 215
10.2 A Review of Biofilter Modelsp. 215
10.2.1 Steady-State Modelsp. 215
10.2.2 Transient Modelsp. 217
10.2.3 Critical Parametersp. 218
10.3 Uses of Biofilter Models in Full-Scale Designsp. 219
10.3.1 Wastewater Treatment Applicationsp. 219
10.3.2 Rendering Applicationsp. 221
10.4 A Review of Biotrickling Filter Modelsp. 222
10.5 Conclusions and Future Workp. 228
Referencesp. 229
Part III Biological Reactors - Applications
11 Biofilter Design and Operation for Odor Control - The New Zealand Experiencep. 235
11.1 Introductionp. 235
11.2 Stream Characterizationp. 236
11.2.1 Compositionp. 236
11.2.2 Process Knowledgep. 237
11.2.3 Temperature and Relative Humidityp. 238
11.2.4 Particulatesp. 238
11.2.5 Odor Chemistryp. 239
11.3 Pretreatment/Conditioning of Airstreamp. 239
11.3.1 Particulatesp. 240
11.3.2 Temperaturep. 240
11.3.3 Relative Humidityp. 241
11.3.4 Bed Designp. 242
11.3.5 Air Distributionp. 242
11.3.6 Bed Mediap. 243
11.3.7 Specification of Soil and Barkp. 243
11.4 Operation and Monitoringp. 246
11.4.1 General Operation and Maintenancep. 246
11.4.2 Pressure Dropp. 247
11.4.3 Moisturep. 247
11.4.4 Temperaturep. 248
11.4.5 pHp. 248
11.4.6 Emission Monitoringp. 248
11.4.7 Biofilter Maintenancep. 248
11.4.8 Common Failuresp. 249
11.5 Conclusionsp. 250
Referencesp. 250
12 Biological Treatment of Waste Gases Containing Inorganic Compoundsp. 253
12.1 Introductionp. 253
12.2 Common Inorganic Air Pollutantsp. 253
12.2.1 Ammoniap. 254
12.2.2 Aminesp. 254
12.2.3 Nitrogen Oxides (NO x )p. 254
12.2.4 Sulfur Oxides (SO x )p. 255
12.3 Treatment Technologies for Inorganic Air Pollutantsp. 255
12.4 Biological Technologies for Inorganic Air Pollutantsp. 259
12.4.1 Biodegradation of Ammoniap. 259
12.4.2 Biodegradation of NO xp. 261
12.5 Biofiltrationp. 262
12.5.1 Biofiltration of Ammoniap. 262
12.5.2 Biofiltration of Mixtures of Ammonia and Hydrogen Sulfidep. 265
12.5.3 Biofiltration of Nitrogen Oxidesp. 265
12.6 Biotrickling Filtrationp. 267
12.7 Bioscrubbingp. 269
12.8 Photobiodegradationp. 269
12.9 Other Biological Processesp. 270
12.9.1 Membrane Bioreactorsp. 271
12.9.2 Fluidized/Spouted Bed Bioreactorsp. 271
12.9.3 Phytoremediationp. 272
12.10 Conclusions and Further Research Needsp. 272
Referencesp. 274
13 Biological Treatment of Waste Gases Containing Volatile Organic Compoundsp. 281
13.1 Introductionp. 281
13.2 Biodegradation of Volatile Organic Compoundsp. 282
13.2.1 Microbial Growthp. 282
13.2.2 Microorganisms and Pollutantsp. 284
13.3 Applications of Biological Processesp. 286
13.3.1 General Operating Conditionsp. 286
13.3.2 Biofiltersp. 287
13.3.3 Biotrickling Filtersp. 292
13.3.4 Bioscrubbersp. 292
13.4 By-Products Generated During Biological Treatments of VOCsp. 296
13.4.1 Overview of Wastes and By-Products Generatedp. 296
13.4.2 Energy Recoveryp. 297
13.5 Conclusionsp. 300
Referencesp. 300
Part IV Biological Reactors - Case Studies
14 Odor Removal in Industrial Facilitiesp. 305
14.1 Introductionp. 305
14.2 Substrate Composition and Concentrationp. 306
14.3 Biomass Controlp. 307
14.4 Compliancep. 308
14.5 Modern Trends in Biofilter Developmentp. 309
14.6 Case Studiesp. 315
14.6.1 Odorous VOC: Formaldehyde Removalp. 315
14.6.2 High-Performance/Enhanced Removal of Sulfur Compoundsp. 317
14.7 Conclusionsp. 324
Referencesp. 325
15 Odor Removal in Municipal Wastewater Treatment Plants - Case Studiesp. 327
15.1 Introductionp. 327
15.2 An Odor Control Biofilter Located Within a Sewer Manhole Coverp. 327
15.2.1 Designp. 328
15.2.2 Operationp. 329
15.2.3 Performancep. 329
15.3 Multiple Biofilter Application Treating Odors from a Headworks Operationp. 329
15.3.1 Designp. 331
15.3.2 Operation and Performancep. 332
15.4 Multiple Biofilter Application (High Flow) at a Wastewater Pumping Stationp. 332
15.4.1 Design and Operationp. 332
15.4.2 Performancep. 332
15.5 A Single Biofilter Application (Low Flow) at a Wastewater Pumping Stationp. 334
15.5.1 Design and Operationp. 335
15.5.2 Performancep. 336
15.6 Single Biofilter at a Wastewater Pumping Station Operated Under Varying Air Temperaturesp. 338
15.6.1 Design and Operationp. 338
15.6.2 Performancep. 339
15.7 Biofiltration of Odors at a Biosolids Handling Facilityp. 341
15.7.1 Design and Operationp. 342
15.7.2 Performancep. 344
15.8 An Intermittent Water Addition Biotrickling Filter Reactorp. 345
15.8.1 Designp. 345
15.8.2 Operationp. 346
15.8.3 Performancep. 348
15.9 Long-Term Operation of a Biotrickling Filter Reactorp. 350
15.9.1 Designp. 350
15.9.2 Operation and Performancep. 351
15.10 Conclusionsp. 353
Referencesp. 353
16 Biotrickling and Bioscrubber Applications to Control Odor and Air Pollutants: Developments, Implementation Issues and Case Studiesp. 355
16.1 Introductionp. 355
16.2 Definitions, Advantages and Limitationsp. 356
16.2.1 Definitionsp. 356
16.2.2 Advantages of Biotrickling Filters and Bioscrubbers versus Biofiltersp. 356
16.2.3 Disadvantagep. 357
16.3 Recent Developmentsp. 357
16.4 Robustnessp. 362
16.5 Missing Gaps for Future Developmentsp. 363
16.6 Case Studiesp. 364
16.6.1 Odor Removal from Waste Gas Emissions at an Anaerobic Wastewater Treatment Plant with a Purspring Bioreactorp. 364
16.6.2 H 2 S Removal from Stripped Groundwater with a Purspring Bioreactorp. 368
16.6.3 V-Spring Bioreactor System Treating CS 2 Emissions at a Fungicide Manufacturing Plantp. 371
16.7 Conclusionsp. 373
Referencesp. 375
Part V Future of Biotechnology
17 Future Prospects of Biotechnology for Odor Controlp. 383
17.1 The Growing Need for Odor Controlp. 383
17.2 Biotechnology is an Important Alternativep. 384
17.3 Possible Obstaclesp. 386
17.4 Current Successesp. 387
17.4.1 Wastewater Treatment Plant Odor Controlp. 388
17.4.2 Swine Industryp. 390
17.5 Technology Developmentsp. 391
17.5.1 Rational Designp. 391
17.5.2 Reliabilityp. 391
17.5.3 Inert Packingp. 393
17.5.4 Biomass Controlp. 394
17.5.5 Inoculationp. 395
17.5.6 Standardsp. 396
17.5.7 Sensing and Automationp. 396
17.5.8 Increasing Sizep. 397
17.5.9 Wastewater Will Lead the Wayp. 397
17.5.10 Application to New Effluentsp. 398
17.5.11 Development of Green Manufacturing-Biosystem Combinationsp. 398
17.6 Conclusionsp. 399
Referencesp. 399
Subject Indexp. 403