Skip to:Content
|
Bottom
Cover image for Drug delivery strategies for poorly water-soluble drugs
Title:
Drug delivery strategies for poorly water-soluble drugs
Publication Information:
Chichester, West Sussex : Wiley, 2013
Physical Description:
xxv, 600 p. : ill. ; 25 cm.
ISBN:
9780470711972

9781118444771

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000010307138 RS199.5 D784 2013 Open Access Book Book
Searching...

On Order

Summary

Summary

Many newly proposed drugs suffer from poor water solubility, thus presenting major hurdles in the design of suitable formulations for administration to patients. Consequently, the development of
techniques and materials to overcome these hurdles is a major area of research in pharmaceutical companies.

Drug Delivery Strategies for Poorly Water-Soluble Drugs provides a comprehensive overview of currently used formulation strategies for hydrophobic drugs, including liposome formulation, cyclodextrin drug carriers, solid lipid nanoparticles, polymeric drug encapsulation delivery systems, self-microemulsifying drug delivery systems, nanocrystals, hydrosol colloidal dispersions, microemulsions, solid dispersions, cosolvent use, dendrimers, polymer- drug conjugates, polymeric micelles, and mesoporous silica nanoparticles. For each approach the book discusses the main instrumentation, operation principles and theoretical background, with a focus on critical
formulation features and clinical studies. Finally, the book includes some recent and novel applications, scale-up considerations and regulatory issues.

Drug Delivery Strategies for Poorly Water-Soluble Drugs is an essential multidisciplinary guide to this important area of drug formulation for researchers in industry and academia working in drug
delivery, polymers and biomaterials.


Author Notes

Dennis Douroumis
University of Greenwich, UK

Alfred Fahr
Friedrich-Schiller University of Jena, Germany


Table of Contents

Sylvio May and Alfred FahrPeter van Hoogevest and Mathew Leigh and Alfred FahrThorsteinn Loftsson and Marcus E. BrewsterSonja Joseph and Heike BunjesNaveed Ahmed and C.E. Mora-Heurtas and Chiraz Jaafar-Maalej and Hatem Fessi and Abdelhamid ElaissariDagmar FischerDimitrios G. Fatouros and Anette M¿ullertzC.M. Keck and S. Kobierski and R. Mauludin and R.H. M¿ullerDennis DouroumisX.Q. Wang and Q. ZhangShu Li and David S. Jones and Gavin P. AndrewsJonathan Hadgraft and Majella E. LaneNarendra K. Jain and Rakesh K. TekadeSwati Biswas and Onkar S. Vaze and Sara Movassaghian and Vladimir P. TorchilinVesa-Pekka Lehto and Jarno Salonen and Helder Santos and Joakim RiikonenStefan SchelerCordin Arpargaus and David R¿utti and Marco Meuri
List of Contributorsp. xv
Series Prefacep. xvii
Prefacep. xix
1 Self-Assembled Delivery Vehicles for Poorly Water-Soluble Drugs: Basic Theoretical Considerations and Modeling Conceptsp. 1
1.1 Introductionp. 1
1.2 Brief Reminder of Equilibrium Thermodynamicsp. 3
1.3 Principles of Self-Assembly in Dilute Solutionsp. 7
1.3.1 Linear Growthp. 9
1.3.2 Cooperative Assemblyp. 10
1.4 Solubility and Partitioning of Drugsp. 11
1.4.1 Simple Partitioning Equilibriap. 11
1.4.2 Partitioning and Micellizationp. 13
1.4.3 Hydrophobicity and Ordering of Waterp. 15
1.5 Ways to Model Interactions in Colloidal Systemsp. 16
1.5.1 Electrostatic Interactions: The Poisson-Boltzmann Modelp. 17
1.5.2 Chain Packing Modelp. 21
1.6 Kinetics of Drug Transfer from Mobile Nanocarriersp. 23
1.6.1 Collision Mechanismp. 25
1.6.2 Diffusion Mechanismp. 26
1.6.3 Internal Kineticsp. 26
1.7 Conclusionp. 29
Acknowledgmentsp. 31
Referencesp. 31
2 Liposomes as Intravenous Solubilizers for Poorly Water-Soluble Drugsp. 37
2.1 Introductionp. 37
2.2 Intravenous Administration of Poorly Water-Soluble Compounds (PWSC)p. 40
2.2.1 Solubilizing Vehicles with Precipitation Risk upon Dilutionp. 41
2.2.2 Solubilizing Vehicles Maintaining Solubilization Capacity upon Dilutionp. 43
2.2.3 Mechanistic Release Aspects/Transfer Liposomal PWSCp. 45
2.2.4 In Vivo Consequencesp. 52
2.2.5 Preclinical Parenteral Assessment Liposomal PWSCp. 56
2.3 Conclusionp. 59
Referencesp. 60
3 Drug Solubilization and Stabilization of Cyclodextrin Drug Carriersp. 67
3.1 Introductionp. 67
3.2 Structure and Physiochemical Propertiesp. 68
3.3 Cyclodextrin Complexes and Phase Solubility Diagramsp. 72
3.4 Cyclodextrin Complexesp. 76
3.4.1 Self-Assembly of Cyclodextrins and their Complexesp. 76
3.4.2 Thermodynamic and Driving Forces for Complexationp. 76
3.5 Effects on Drug Stabilityp. 77
3.6 Cyclodextrins and Drug Permeation through Biological Membranesp. 80
3.7 Drug Solubilization in Pharmaceutical Formulationsp. 82
3.7.1 Oral Drug Deliveryp. 84
3.7.2 Sublingual, Buccal, Nasal, Pulmonary, Rectal and Vaginal Drug Deliveryp. 86
3.7.3 Ophthalmic Drug Deliveryp. 87
3.7.4 Dermal and Transdermal Drug Deliveryp. 87
3.7.5 Injectable Formulationsp. 87
3.7.6 Toxicology and Pharmacokineticsp. 89
3.8 Regulatory Issuesp. 90
3.9 Conclusionp. 91
Referencesp. 91
4 Solid Lipid Nanoparticles for Drug Deliveryp. 103
4.1 Introductionp. 103
4.2 Preparation Procedures for Solid Lipid Nanoparticlesp. 104
4.2.1 Melt Dispersion Processesp. 104
4.2.2 Other Top-Down Processesp. 109
4.2.3 Precipitation from Homogeneous Systemsp. 111
4.2.4 Comparison of the Formulation Procedures and Scale-Up Feasibilityp. 113
4.2.5 Further Processing of Solid Lipid Nanoparticle Suspensionsp. 115
4.3 Structural Parameters and their Influence on Product Quality and Pharmaceutical Performancep. 116
4.3.1 Particle Size and Size Distributionp. 116
4.3.2 Surface Propertiesp. 117
4.3.3 Solid State Properties of Solid Lipid Nanoparticlesp. 117
4.3.4 Particle Morphology and Overall Structure of the Dispersionsp. 121
4.4 Incorporation of Poorly Soluble Drugs and In Vitro Releasep. 123
4.4.1 Drug Incorporationp. 123
4.4.2 In Vitro Drug Releasep. 126
4.5 Safety Aspects, Toxicity and Pharmacokinetic Profilesp. 129
4.5.1 In Vitro Behavior and Toxicity Studiesp. 129
4.5.2 Bioavailability and Pharmacokineticsp. 131
4.6 Conclusionp. 133
Referencesp. 133
5 Polymeric Drug Delivery Systems for Encapsulating Hydrophobic Drugsp. 151
5.1 Introductionp. 151
5.2 Safety and Biocompatibility of Polymersp. 152
5.3 Encapsulation Techniques of Hydrophobic Drugsp. 156
5.3.1 The Nanoprecipitation Methodp. 156
5.3.2 The Emulsification Methodsp. 158
5.3.3 Polymersome Preparationp. 164
5.3.4 Supercritical Fluid Technologyp. 166
5.3.5 The Polymer-Coating Methodp. 167
5.3.6 The Layer-by-Layer Methodp. 171
5.4 Behavior of Nanocapsules as Drug Delivery Systemsp. 173
5.4.1 Mean Size of Nanocapsulesp. 173
5.4.2 Zeta Potentialp. 173
5.4.3 Encapsulation Efficiencyp. 174
5.4.4 Drug Release Propertiesp. 176
5.4.5 General Performance of the Nanoparticlesp. 176
5.5 Conclusionp. 177
Referencesp. 180
6 Polymeric Drug Delivery Systems for Encapsulating Hydrophobic Drugsp. 199
6.1 Introductionp. 199
6.2 Drug Encapsulation by Monomer Polymerizationp. 200
6.2.1 Emulsion Polymerizationp. 201
6.2.2 Interfacial Polymerizationp. 206
6.2.3 Interfacial Polycondensationp. 207
6.3 Polymeric Nanospheres and Nanocapsules Produced by Polymerizationp. 209
6.4 Formulation Componentsp. 210
6.5 Control of Particle Morphologyp. 212
6.6 Toxicity and In Vivo Performancep. 213
6.7 Scale-Up Considerationsp. 214
6.8 Conclusionp. 217
Acknowledgementsp. 217
Referencesp. 217
7 Development of Self-Emulsifying Drug Delivery Systems (SEDDS) for Oral Bioavailability Enhancement of Poorly Soluble Drugsp. 225
7.1 Introductionp. 225
7.2 Lipid Processing and Drug Solubilizationp. 226
7.3 Self-Emulsifying Drug Delivery Systemsp. 227
7.3.1 Excipients Used in SEDDSp. 227
7.3.2 Self-Emulsification Mechanismp. 228
7.3.3 Physicochemical Characterization of SEDDSp. 229
7.3.4 Drug Incorporation in SEDDSp. 231
7.4 In Vitro Digestion Modelp. 232
7.5 Enhancement of Oral Absorption by SEDDSp. 235
7.6 Conclusionp. 238
Referencesp. 239
8 Novel Top Down Technologies: Effective Production of Ultra-Fine Drug Nanocrystalsp. 247
8.1 Introduction: General Benefits of Drug Nanocrystals (First Generation)p. 247
8.2 Ultra-Fine Drug Nanocrystals (100 Nm) and Their Special Propertiesp. 248
8.3 Production of First Generation Nanocrystals: A Brief Overviewp. 250
8.3.1 Hydrosolsp. 250
8.3.2 Nanomorphp. 251
8.3.3 NanocrystalsTM by Bead Millingp. 251
8.3.4 DissoCubes R by High Pressure Homogenizationp. 251
8.3.5 NANOEDGE by Baxterp. 252
8.3.6 Summary of First Generation Production Technologiesp. 252
8.4 Production of Ultra-Fine Drug Nanocrystals: Smartcrystalsp. 252
8.4.1 Fine-Tuned Precipitationp. 252
8.4.2 The SmartCrystal Conceptp. 253
8.5 Conclusionp. 259
Referencesp. 259
9 Nanosuspensions with Enhanced Drug Dissolution Rates of Poorly Water-Soluble Drugsp. 265
9.1 Introductionp. 265
9.2 Crystal Growth and Nucleation Theoryp. 266
9.3 Creating Supersaturation and Stable Nanosuspensionsp. 269
9.4 Antisolvent Precipitation Via Mixer Processingp. 272
9.5 Antisolvent Precipitation by Using Ultrasonicationp. 277
9.6 Nanoprecipitation Using Microfluidic Reactorsp. 278
9.7 Particle Engineering by Spray: Freezing into Liquidp. 279
9.8 Precipitation by Rapid Expansion from Supercritical to Aqueous Solutionp. 280
9.9 Conclusionp. 282
Referencesp. 282
10 Microemulsions for Drug Solubilization and Deliveryp. 287
10.1 Introductionp. 287
10.2 Microemulsion Formation and Phase Behaviorp. 289
10.2.1 Theories of Microemulsion Formationp. 289
10.2.2 Structure of Microemulsionsp. 289
10.2.3 Phase Behaviorp. 292
10.3 HLB, PIT and Microemulsion Stabilityp. 293
10.4 Microemulsion Physico-Chemical Characterizationp. 293
10.5 Components of Microemulsion Formulationsp. 295
10.5.1 Oilsp. 296
10.5.2 Surfactantsp. 298
10.5.3 Cosurfactantsp. 300
10.5.4 Drugsp. 302
10.6 Preparation Methodsp. 303
10.7 In Vitro and In Vivo Biological Studiesp. 303
10.7.1 Microemulsions Used as an Oral Delivery System for Poorly Water-Soluble Compoundsp. 303
10.7.2 Microemulsions Used as a Parenteral Delivery System for Poorly Water-Soluble Compoundsp. 311
10.8 Recent Developments and Future Directionsp. 314
10.8.1 Develop Cremophor-Free Microemulsionsp. 314
10.8.2 Dried O/W Emulsions for Oral Delivery of Poorly Soluble Drugsp. 315
10.8.3 Self-Microemulsifying Drug Delivery System (SMEDDS)p. 318
Referencesp. 319
11 Enhancing Drug Solubility and Bioavailability Using Hot Melt Extruded Solid Dispersionsp. 325
11.1 Introduction: Present Challenges to Oral Drug Deliveryp. 325
11.2 Solid Dispersions/Solutions for Enhanced Drug Solubilityp. 327
11.3 Hot Melt Extrusion (HME) as a Drug Delivery Technologyp. 329
11.3.1 Historical Review of HMEp. 329
11.3.2 Equipmentp. 329
11.3.3 Screws' Geometryp. 331
11.3.4 HME Processingp. 332
11.3.5 Product Characteristicsp. 335
11.3.6 Materials Commonly Used in HME for Solubility Enhancementp. 337
11.4 Solubility Enhancement Using HMEp. 340
11.4.1 Product Structurep. 340
11.4.2 HME Matrix Carriersp. 341
11.4.3 HME for the Manufacture of Pharmaceutical Co-Crystalsp. 343
11.5 Representative Case Studies with Enhanced Solubilityp. 344
11.5.1 Increased Dissolution Rate Due to Size Reduction or De-Aggregationp. 344
11.5.2 Increased Dissolution Rate Due to Drug Morphology Changep. 345
11.5.3 Controlled or Prolonged Release with Enhanced Release Extentp. 346
11.5.4 Complexation to Enhance Dissolution Performancep. 346
11.5.5 Co-Crystal Formationp. 347
11.6 Conclusionp. 347
Referencesp. 348
12 Penetration Enhancers, Solvents and the Skinp. 359
12.1 Introductionp. 359
12.2 Interactions of Solvents and Enhancers with the Skinp. 360
12.2.1 Small Solventsp. 361
12.2.2 Solvents with Longer Carbon Chainsp. 361
12.3 Skin Permeation Enhancement of Ibuprofenp. 363
12.3.1 Infinite Dose Conditionsp. 364
12.3.2 Finite Dose Conditionsp. 368
12.4 Conclusionp. 369
Referencesp. 369
13 Dendrimers for Enhanced Drug Solubilizationp. 373
13.1 Introductionp. 373
13.2 Current Solubilization Strategiesp. 374
13.3 Origin of Dendrimersp. 374
13.4 What Are Dendrimers?p. 375
13.5 Synthesis of Dendritic Architecturep. 375
13.6 Structure and Intrinsic Properties of Dendrimeric Compartmentsp. 377
13.7 Dendrimers in Solubilizationp. 378
13.8 Factors Affecting Dendrimer-Mediated Solubilization and Drug Deliveryp. 381
13.8.1 Nature of the Dendritic Corep. 381
13.8.2 Dendrimer Generationp. 382
13.8.3 Nature of the Dendrimer Surfacep. 382
13.8.4 Dendrimer Concentrationp. 382
13.8.5 pH of Solutionp. 383
13.8.6 Temperaturep. 384
13.8.7 Solventsp. 384
13.9 Drug-Dendrimer Conjugation Approachesp. 386
13.9.1 Physical Loading: Complexation of Water-Insoluble Drugsp. 386
13.9.2 Covalent Loading: Synthesis of Drug-Dendrimer Conjugatep. 389
13.10 Dendrimers' Biocompatibility and Toxicityp. 393
13.10.1 PEGylation Technology: A Way to Enhance Dendrimer Solubility and Biocompatibilityp. 393
13.11 Classification of PEGylated Dendrimersp. 394
13.11.1 PEGylated Dendrimerp. 394
13.11.2 Drug-Conjugated PEGylated Dendrimerp. 397
13.11.3 PEG Cored Dendrimerp. 397
13.11.4 PEG Branched Dendrimerp. 398
13.11.5 PEG-Conjugated Targeted Dendrimerp. 398
13.12 Conclusionp. 399
Referencesp. 400
14 Polymeric Micelles for the Delivery of Poorly Soluble Drugsp. 411
14.1 Micelles and Micellizationp. 411
14.1.1 Factors Affecting Micellizationp. 413
14.1.2 Thermodynamics of Micellizationp. 414
14.2 Chemical Nature and Formation Mechanism of Polymeric Micellesp. 416
14.2.1 Core and Corona of the Polymeric Micellesp. 417
14.2.2 Block Co-Polymers as Building Block of Polymeric Micellesp. 418
14.3 Polymeric Micelles: Unique Nanomedicine Platformsp. 419
14.3.1 Polymeric Micelles for the Delivery of Poorly Soluble Drugsp. 421
14.4 Determination of Physico-Chemical Characteristics of Polymeric Micellesp. 430
14.4.1 Critical Micelle Concentrations (CMC)p. 430
14.4.2 Particle Size and Stabilityp. 432
14.5 Drug Loadingp. 435
14.5.1 Drug-Loading Proceduresp. 437
14.6 Biodistribution and Toxicityp. 439
14.7 Targeting Micellar Nanocarriers: Example: Drug Delivery to Tumorsp. 443
14.7.1 Passive Targetingp. 443
14.7.2 Active Targeting: Functionalized Polymeric Micellesp. 445
14.8 Site-Specific Micellar-Drug Release Strategiesp. 449
14.9 Intracellular Delivery of Micellesp. 452
14.10 Multifunctional Micellar Nanocarriersp. 453
14.11 Conclusionp. 455
Referencesp. 455
15 Nanostructured Silicon-Based Materials as a Drug Delivery System for Water-Insoluble Drugsp. 477
15.1 Introductionp. 477
15.2 Control of Particle Size and Pore Morphologyp. 478
15.3 Surface Functionalizationp. 482
15.3.1 Stabilizationp. 482
15.3.2 Biofunctionalizationp. 483
15.4 Biocompatibility and Cytotoxicityp. 485
15.4.1 In Vitro Studiesp. 486
15.4.2 In Vivo and Ex Vivo Studiesp. 490
15.5 Nanostructured Silicon Materials as DDSp. 492
15.5.1 Drug-Loading Proceduresp. 492
15.5.2 Enhanced Drug Releasep. 495
15.5.3 Intracellular Uptakep. 500
15.6 Conclusionp. 502
Referencesp. 502
16 Micro- and Nanosizing of Poorly Soluble Drugs by Grinding Techniquesp. 509
16.1 Introductionp. 509
16.2 Kinetics of Drug Dissolutionp. 510
16.3 Micronization and Nanosizing of Drugsp. 510
16.3.1 Dissolution Enhancement by Micronization and Nanonizationp. 510
16.3.2 Dry and Wet Milling Technologiesp. 511
16.3.3 NanoCrystal R Technologyp. 512
16.4 Theory of Grinding Operationsp. 512
16.4.1 Fraction under Compressive Stressp. 512
16.4.2 Brittle-Ductile Transition and Grinding Limitp. 514
16.4.3 Milling Beyond the Brittle-Ductile Transition Limitp. 516
16.4.4 Fatigue Fracturep. 517
16.4.5 Agglomerationp. 517
16.4.6 Amorphizationp. 519
16.5 Influence of the Stabilizerp. 520
16.5.1 Effects of Stabilizationp. 520
16.5.2 Steric and Electrostatic Stabilizationp. 521
16.5.3 Surfactantsp. 523
16.5.4 Polymersp. 527
16.6 Milling Equipment and Technologyp. 527
16.6.1 Grinding Beadsp. 527
16.6.2 Types of Media Millsp. 528
16.6.3 Process Parametersp. 532
16.7 Process Development from Laboratory to Commercial Scalep. 535
16.7.1 Early Developmentp. 535
16.7.2 Toxicological Studiesp. 535
16.7.3 Clinical Studiesp. 536
16.7.4 Dryingp. 536
16.7.5 Further Processing of Drug Nanoparticlesp. 536
16.8 Application and Biopharmaceutical Propertiesp. 537
16.8.1 Oral Drug Deliveryp. 538
16.8.2 Parenteral Drug Deliveryp. 540
16.8.3 Extracorporal Therapyp. 542
16.9 Conclusionp. 543
Referencesp. 543
17 Enhanced Solubility of Poorly Soluble Drugs Via Spray Dryingp. 551
17.1 Introductionp. 551
17.2 Advantages of Spray Dryingp. 553
17.3 Principles and Instrumentation of Spray Drying Processesp. 553
17.3.1 Principal Function of a Spray Dryerp. 553
17.3.2 Traditional Spray Dryersp. 558
17.3.3 Recent Developments in Spray Dryingp. 561
17.4 Optimizing Spray Drying Process Parametersp. 563
17.4.1 Drying Gas Flow Rate (Aspirator Rate)p. 563
17.4.2 Drying Gas Humidityp. 563
17.4.3 Inlet Temperaturep. 564
17.4.4 Spray Gas Flowp. 565
17.4.5 Feed Concentrationp. 565
17.4.6 Feed Ratep. 565
17.4.7 Organic Solvent Instead of Waterp. 566
17.5 Spray Drying of Water-Insoluble Drugs: Case Studiesp. 566
17.5.1 Nanosuspensionsp. 566
17.5.2 Solid Lipid Nanoparticlesp. 567
17.5.3 Silica-Lipid Hybrid Microcapsulesp. 568
17.5.4 Milled Nanoparticlesp. 570
17.5.5 Inhalation Dosage Formsp. 571
17.5.6 Porous Productsp. 572
17.5.7 Microemulsionsp. 572
17.5.8 Application Examples: Summaryp. 575
17.6 Conclusionp. 582
Referencesp. 583
Indexp. 000
Go to:Top of Page