Cover image for Mechanics of fluids
Title:
Mechanics of fluids
Personal Author:
Publication Information:
Englewood Cliffs, N.J. : Prentice-Hall, 1991
ISBN:
9780135727935
Subject Term:
Added Author:

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
30000000472013 TA357 P67 1991 Open Access Book Book
Searching...
Searching...
30000004022350 TA357 P67 1991 Open Access Book Book
Searching...
Searching...
30000004683656 TA357 P67 1991 Open Access Book Book
Searching...

On Order

Summary

Summary

Text presents fluid mechanics so that the undergraduate engineering student can understand the physical concepts, follow the mathematics, and analyze the important phenomena encountered by the engineer. Includes example problems worked out in detail, as well as home problems. Annotation copyright Bo


Table of Contents

Chapter 1 Basic Considerationsp. 3
1.1 Introductionp. 4
1.2 Dimensions, Units, and Physical Quantitiesp. 4
1.3 Continuum View of Gases and Liquidsp. 8
1.4 Pressure and Temperature Scalesp. 11
1.5 Fluid Propertiesp. 14
1.6 Conservation Lawsp. 23
1.7 Thermodynamic Properties and Relationshipsp. 24
1.8 Summaryp. 30
Problemsp. 31
Chapter 2 Fluid Staticsp. 39
2.1 Introductionp. 40
2.2 Pressure at a Pointp. 40
2.3 Pressure Variationp. 41
2.4 Fluids at Restp. 43
2.5 Linearly Accelerating Containersp. 67
2.6 Rotating Containersp. 69
2.7 Summaryp. 72
Problemsp. 73
Chapter 3 Introduction to Fluids in Motionp. 87
3.1 Introductionp. 88
3.2 Description of Fluid Motionp. 88
3.3 Classification of Fluid Flowsp. 100
3.4 The Bernoulli Equationp. 107
3.5 Summaryp. 116
Problemsp. 117
Chapter 4 The Integral forms of the Fundamental Lawsp. 127
4.1 Introductionp. 128
4.2 The Three Basic Lawsp. 128
4.3 System-to-Control-Volume Transformationp. 132
4.4 Conservation of Massp. 137
4.5 Energy Equationp. 144
4.6 Momentum Equationp. 157
4.7 Moment-of-Momentum Equationp. 176
4.8 Summaryp. 179
Problemsp. 181
Chapter 5 The Differential forms of the Fundamental Lawsp. 203
5.1 Introductionp. 204
5.2 Differential Continuity Equationp. 205
5.3 Differential Momentum Equationp. 210
5.4 Differential Energy Equationp. 223
5.5 Summaryp. 229
Problemsp. 231
Chapter 6 Dimensional Analysis and Similitudep. 237
6.1 Introductionp. 238
6.2 Dimensional Analysisp. 239
6.3 Similitudep. 248
6.4 Normalized Differential Equationsp. 258
6.5 Summaryp. 262
Problemsp. 263
Chapter 7 Internal Flowsp. 271
7.1 Introductionp. 272
7.2 Entrance Flow and Developed Flowp. 272
7.3 Laminar Flow in a Pipep. 274
7.4 Laminar Flow between Parallel Platesp. 281
7.5 Laminar Flow between Rotating Cylindersp. 288
7.6 Turbulent Flow in a Pipep. 292
7.7 Uniform Turbulent Flow in Open Channelsp. 325
7.8 Summaryp. 329
Problemsp. 330
Chapter 8 External Flowsp. 345
8.1 Introductionp. 346
8.2 Separationp. 350
8.3 Flow Around Immersed Bodiesp. 352
8.4 Lift and Drag on Airfoilsp. 367
8.5 Potential Flow Theoryp. 372
8.6 Boundary Layer Theoryp. 385
8.7 Summaryp. 409
Problemsp. 410
Chapter 9 Compressible Flowp. 425
9.1 Introductionp. 426
9.2 Speed of Sound and the Mach Numberp. 427
9.3 Isentropic Nozzle Flowp. 431
9.4 Normal Shock Wavep. 442
9.5 Shock Waves in Converging-Diverging Nozzlesp. 450
9.6 Vapor Flow through a Nozzlep. 455
9.7 Oblique Shock Wavep. 457
9.8 Isentropic Expansion Wavesp. 462
9.9 Summaryp. 466
Problemsp. 467
Chapter 10 Flow in Open Channelsp. 475
10.1 Introductionp. 476
10.2 Open-Channel Flowsp. 477
10.3 Uniform Flowp. 480
10.4 Energy Concepts in Open-Channel Flowp. 486
10.5 Momentum Concepts in Open-Channel Flowp. 500
10.6 Nonuniform, Gradually Varied Flowp. 512
10.7 Numerical Analysis of Water Surface Profilesp. 520
10.8 Summaryp. 530
Problemsp. 531
Chapter 11 Flows in Piping Systemsp. 545
11.1 Introductionp. 546
11.2 Losses in Piping Systemsp. 546
11.3 Simple Pipe Systemsp. 552
11.4 Analysis of Pipe Networksp. 563
11.5 Unsteady Flow in Pipelinesp. 576
11.6 Summaryp. 584
Problemsp. 585
Chapter 12 Turbomachineryp. 601
12.1 Introductionp. 602
12.2 Turbopumpsp. 602
12.3 Dimensional Analysis and Similitude for Turbomachineryp. 620
12.4 Use of Turbopumps in Piping Systemsp. 630
12.5 Turbinesp. 636
12.6 Summaryp. 651
Problemsp. 652
Chapter 13 Measurements in Fluid Mechanicsp. 661
13.1 Introductionp. 662
13.2 Measurement of Local Flow Parametersp. 662
13.3 Flow Rate Measurementp. 670
13.4 Flow Visualizationp. 679
13.5 Data Acquisition and Analysisp. 687
13.6 Summaryp. 699
Problemsp. 699
Chapter 14 Environmental Fluid Mechanicsp. 703
14.1 Introductionp. 704
14.2 Transport Processes in Fluidsp. 704
14.3 Fundamental Equations of Mass and Heat Transportp. 709
14.4 Turbulent Transportp. 723
14.5 Evaluating the Transport Coefficients in the Environmentp. 736
14.6 Summaryp. 746
Problemsp. 747
Chapter 15 Computational Fluid Dynamicsp. 753
15.1 Introductionp. 754
15.2 An Overview of Finite-Difference and Finite-Volume Methodsp. 754
15.3 Examples of Simple Finite-Difference Methodsp. 755
15.4 Examples of Simple Finite-Volume Methodsp. 766
15.5 Other Considerationsp. 769
15.6 Grid Generationp. 776
15.7 Methods for the Compressible Navier-Stokes Equationsp. 791
15.8 Methods for the Incompressible Navier-Stokes Equationsp. 794
15.9 Closing Remarksp. 795
Referencesp. 796
Problemsp. 797
Appendixp. 800
A. Units and Conversions and Vector Relationshipsp. 801
B. Fluid Propertiesp. 803
C. Properties of Areas and Volumesp. 809
D. Compressible-Flow Tables for Airp. 810
E. Numerical Solutions for Chapter 10p. 819
F. Numerical Solutions for Chapter 11p. 826
Bibliographyp. 841
Referencesp. 841
General Interestp. 842
Answers to Selected Problemsp. 844
Indexp. 853
Creditsp. 863