Cover image for Characterization of nanostructures
Title:
Characterization of nanostructures
Publication Information:
Boca Raton : Taylor & Francis, c2013
Physical Description:
xix, 314 pages : illustrations ; 24 cm.
ISBN:
9781439854150
General Note:
"A CRC title."
Added Author:

Available:*

Library
Item Barcode
Call Number
Material Type
Item Category 1
Status
Searching...
32000000000171 TA418.9.N35 M94 2013 Open Access Book Book
Searching...

On Order

Summary

Summary

The techniques and methods that can be applied to materials characterization on the microscale are numerous and well-established. Divided into two parts, Characterization of Nanostructures provides thumbnail sketches of the most widely used techniques and methods that apply to nanostructures, and discusses typical applications to single nanoscale objects, as well as to ensembles of such objects.

Section I: Techniques and Methods overviews the physical principles of the main techniques and describes those operational modes that are most relevant to nanoscale characterization. It provides sufficient technical detail so that readers and prospective users can gain an appreciation of the strengths and limitations of particular techniques. The section covers both mainstream and less commonly used techniques.

Section II: Applications of Techniques to Structures of Different Dimensionalities and Functionalities deals with the methods for materials characterization of generic types of systems, using carefully chosen illustrations from the literature. Each chapter begins with a brief description of the materials and supplies a context for the methods for characterization. The volume concludes with a series of flow charts and brief descriptions of tactical issues.

The authors focus on the needs of the research laboratory but also address those of quality control, industrial troubleshooting, and online analysis. Characterization of Nanostructures describes those techniques and their operational modes that are most relevant to nanoscale characterization. It is especially relevant to systems of different dimensionalities and functionalities. The book builds a bridge between generalists, who play vital roles in the post-disciplinary area of nanotechnology, and specialists, who view themselves as more in the context of the discipline.


Author Notes

Sverre Myhra and John Riviere are affiliated with Oxford University, UK.


Table of Contents

Prefacep. xiii
Acknowledgementsp. xvii
The Authorsp. xix
Chapter 1 Introduction to Characterization of Nanostructuresp. 1
1.1 Nanotechnology-In the Beginning There Was the Ideap. 1
1.2 Nanotechnology as a Practical Propositionp. 1
1.3 What Is Nanotechnology?p. 2
1.3.1 Nanotechnology-Top-Downp. 3
1.3.2 Nanotechnology-Bottom-Upp. 4
1.3.3 Nanotechnology-A Socio-Economic Definitionp. 6
1.4 Materials Characterization-What Is It?p. 7
1.4.1 Strategy Versus Tactics of Materials Characterizationp. 8
1.4.1.1 Meso-Versus Nano-scalep. 9
1.4.1.2 Dimensionality and Size Regimes of Meso/Nanostructuresp. 9
1.4.1.3 Dimensionalityp. 10
1.4.2 Macro-/Micro-scale Versus Nano-scale Materials Characterizationp. 11
1.5 Current State of 'Best Practice' and QAp. 12
References and Useful Readingp. 12
Bibiliographyp. 13
Section I Techniques and Methods
Chapter 2 Electron-Optical Imaging of Nanostructures ((HR)TEM, STEM, and SEM)p. 17
2.1 Introductionp. 17
2.2 TEM Overviewp. 18
2.2.1 Magnetic Lenses and Aberrationsp. 19
2.2.2 Spherical Aberrationp. 21
2.2.3 Chromatic Aberrationp. 21
2.2.4 Resolution in the Presence of Aberrationsp. 21
2.3 Interactions of Electrons with Matterp. 23
2.3.1 High-Resolution Image Formationp. 23
2.4 Aberration Correctionp. 27
2.5 Scanning Transmission Electron Microscopy (STEM)p. 27
2.5.1 Technical Implementationp. 29
2.5.2 Diffraction Information from STEMp. 30
2.6 The Issue of Radiation Damage during Imaging and Analysisp. 31
2.7 SEMp. 32
2.7.1 Technical Overviewp. 32
2.7.2 Cold-Cathode Field Emissionp. 32
2.7.3 Point-to-Point Resolutionp. 33
2.7.4 Depth of Fieldp. 34
2.7.5 Imaging Modesp. 35
2.7.5.1 Secondary Electron Imagingp. 35
2.8 Examples of SEM Performancep. 36
2.9 Optimization of Image Qualityp. 37
2.9.1 Insulating Materialsp. 37
Acknowledgementsp. 37
Appendix: Definitions of Acronyms Used Widely for Description of Electron Microscopy (in Alphabetical Order)p. 39
Referencesp. 39
Chapter 3 Electron-Optical Analytical Techniquesp. 41
3.1 Introductionp. 41
3.2 Loss Processesp. 41
3.2.1 EDS Spectral Notationp. 42
3.2.2 EDS Spectrap. 43
3.2.2.1 Fluorescence Yield (¿)p. 45
3.3 EELSp. 45
3.3.1 EELS Spectral Featuresp. 45
3.4 Technical Implementation and Methodsp. 47
3.4.1 EDSp. 47
3.4.1.1 Quantification of EDS Spectrap. 49
3.4.2 EELSp. 50
3.5 Complementarity of EDS and EELS: A Case Studyp. 51
Acknowledgementsp. 60
Referencesp. 60
Chapter 4 Photon-Optical Spectroscopy-Raman and Fluorescencep. 61
4.1 Introductionp. 61
4.2 Raman Spectroscopyp. 61
4.2.1 Physical Principlesp. 61
4.2.2 A Formal Classical Description of the Raman Processp. 63
4.2.3 SERS-Surface Enhanced Raman Spectroscopyp. 64
4.2.4 TERS-Tip Enhanced Raman Spectroscopyp. 65
4.2.5 Technical Implementation and Analytical Methodsp. 65
4.3 Fluorescence Spectroscopyp. 66
4.3.1 Technical Implementation and Operational Modesp. 67
4.3.2 Fluorescence Spectroscopy-Biomolecular Applicationsp. 69
4.3.3 Spectroscopic Analysis of Quantum Dotsp. 70
4.3.4 Carbon-Based Nanostructures and Raman Spectroscopyp. 70
Acknowledgementsp. 74
Referencesp. 74
Chapter 5 Scanning Probe Techniques and Methodsp. 77
5.1 Introductionp. 77
5.1.1 Essential Elements of SPMp. 77
5.1.1.1 Cost-Effectivenessp. 78
5.1.1.2 Platform Flexibilityp. 78
5.1.1.3 Ambient Tolerancep. 80
5.1.1.4 User-Friendlinessp. 80
5.1.1.5 Ease of Interpretationp. 80
5.1.1.6 Unique Capabilitiesp. 81
5.2 Technical Implementationp. 81
5.2.1 Spatial Positioning and Controlp. 81
5.2.2 The Feedback Control Electronicsp. 83
5.2.3 The Probep. 86
5.2.3.1 STMp. 86
5.2.3.2 SFMp. 87
5.2.3.3 SFM Probe Calibrationp. 88
5.3 STM/STSp. 90
5.3.1 Physical Principles-Brief Theoryp. 90
5.3.2 Operational Modes-STMp. 94
5.3.2.1 Imaging at Constant Tunnel Currentp. 94
5.3.2.2 Imaging at Constant Heightp. 94
5.3.2.3 Error Signal Mappingp. 94
5.3.2.4 I-V Spectroscopyp. 94
5.4 SFMp. 95
5.4.1 Physical Principlesp. 96
5.4.2 SFM Operational Modesp. 97
5.4.2.1 AC Modes-Non-contact and Intermittent Contact (Tapping)p. 97
5.4.2.2 LFM and Friction Loop Analysisp. 100
5.4.2.3 F-d Analysisp. 101
5.5 SCMp. 110
5.5.1 Principles and Implementationp. 110
5.5.2 Capacitance Mappingp. 110
5.5.3 Mapping Differential Capacitancep. 112
5.6 SNOMp. 113
5.6.1 Physical Principlesp. 113
5.6.2 Technical Detailsp. 115
5.6.2.1 Shear-Force Detectionp. 115
5.6.2.2 Optical Fibre Probep. 115
5.6.3 Operational Modesp. 115
5.6.3.1 Transmission Imagingp. 117
5.6.3.2 Fluorescencep. 117
5.6.3.3 Near-Field Raman Spectroscopy and Mappingp. 118
5.6.4 Tip-Enhanced Raman Spectroscopy (TERS)p. 118
5.6.4.1 Technical Implementation of TERSp. 119
5.7 SECMp. 119
5.7.1 Physical Principlesp. 120
5.7.2 Technical Details and Applicationsp. 120
5.8 Scanning Kelvin Probe (SKP)p. 122
5.8.1 Effects of Electrostatic Interactionp. 122
5.9 Scanning Ion Current Microscopy (SICM)p. 126
5.10 Future Prospectsp. 127
5.10.1 Increased Spatial Resolution for SFMp. 127
5.10.2 Single Atom Chemical Identification by AFMp. 128
5.10.3 Faster Scan Ratesp. 130
5.10.4 Greater Integration and Specialisationp. 130
Appendix: Methods for Calibration of Normal Force Constant, k Np. 131
Referencesp. 132
Chapter 6 Techniques and Methods for Nanoscale Analysis of Single Particles and Ensembles of Particlesp. 135
6.1 Introductionp. 135
6.1.1 Particle Sizep. 136
6.2 Photon-Correlation Spectroscopy (PCS) or Dynamic Light Scattering (DLS)p. 138
6.2.1 Theoryp. 139
6.2.3 Mie Theory of Scatteringp. 144
6.2.4 DLS Instrumentationp. 145
6.3 Differential Centrifugal Sedimentation (DCS)p. 147
6.3.1 The Basics of Differential Sedimentationp. 147
6.3.2 DCS Instrument Designp. 148
6.4 Zeta Potentialp. 151
6.5 Differential Mobility Spectrometry (DMS)p. 152
6.6 Surface Area Determinationp. 152
6.6.1 Adsorption and Desorption at Surfacesp. 154
6.6.2 Surface Area Measurement by the BET Methodp. 158
6.6.3 BET Particle Analysis and the Equivalent Spherep. 161
6.7 Surface and Bulk Chemistryp. 161
6.7.1 Single Particle Analysisp. 161
6.7.2 Surface Chemistry of Particle Ensemblesp. 162
6.7.3 Wettabilityp. 163
6.8 Overview-Choice of Technique(s)p. 164
Acknowledgementsp. 165
Referencesp. 166
Section II Applications
Chapter 7 C 60 and Other Cage Structuresp. 171
7.1 Introductionp. 171
7.1.1 Euler's Theoremp. 171
7.1.2 The Fullerene Familyp. 172
7.2 Characterization of Fullerenes and Fullerene Compoundsp. 174
7.2.1 Characterization of Non-interacting C 60 and of C n≠60 Moleculesp. 174
7.3 Endohedral Fullerenesp. 176
7.4 Fulleritesp. 181
7.5 Peapod-Fullerenes in CNTp. 185
Referencesp. 189
Chapter 8 Quantum Dots and Related Structuresp. 191
8.1 Introductionp. 191
8.2 Particles in 2-D and 3-D Confinementp. 192
8.3 Synthesis Routes for Quantum Dotsp. 197
8.3.1 Colloidal Nucleation and Growthp. 199
8.3.2 Quantum Dots-Lithographic Methodsp. 200
8.3.3 Self-Assembled Quantum Dots on a Planar Substratep. 200
8.4 Characterization of Quantum Dotsp. 200
8.4.1 Structure, Topography, and Analytical Informationp. 200
8.4.2 X-Ray Diffraction and Scattering Methods for Ensembles-XRD, SAXS, and WAXSp. 202
8.4.2.1 Characterization by XRDp. 202
8.4.2.2 Small-Angle X-Ray Scattering (SAXS) of Quantum Dotsp. 203
8.5 Absorption and Photoluminescence Spectroscopy of Quantum Dotsp. 205
8.5.1 Photoluminescence of Single Quantum Dotsp. 208
Referencesp. 213
Chapter 9 Carbon Nanotubes and Other Tube Structuresp. 215
9.1 Introductionp. 215
9.2 Description of CNT Structurep. 215
9.3 Synthesis Routesp. 218
9.3.1 Arc-Discharge and Laser Ablationp. 218
9.3.2 Chemical Vapour Deposition (CVD)p. 218
9.3.2 Purification of Raw Product from Synthesis Routesp. 219
9.4 Electronic Structure of Graphene and SWCNTp. 219
9.4.1 Electronic Band Structure of Graphenep. 220
9.4.2 Electronic Structure of SWCNTsp. 221
9.5 General Characteristics of CNTsp. 223
9.6 Other Tube Structuresp. 223
9.7 Characterization of Nanotubesp. 225
9.7.1 Topographical and Structural Characterizationp. 226
9.7.1.1 CNTp. 226
9.7.1.2 Other Tube Structuresp. 231
9.7.2 Analysis of Nanotubes by SPMp. 234
9.7.3 Raman Spectroscopy of CNTsp. 238
9.7.4 Characterization of Electronic Structurep. 245
9.7.4.1 EELSp. 245
9.7.4.2 Luminescence Spectroscopyp. 245
Referencesp. 250
Chapter 10 Nanowiresp. 253
10.1 Introductionp. 253
10.2 Synthesis Routesp. 253
10.2.1 Overview of the VLS Processp. 253
10.2.2 The Template Processp. 256
10.3 Characterization of Nanowires by SEM and TEMp. 258
10.4 Characterization of Nanowire Heterostructuresp. 259
10.5 Characterization Related to Potential Applicationsp. 259
Referencesp. 269
Chapter 11 Graphene and Other Monolayer Structuresp. 271
11.1 Introductionp. 271
11.2 Graphene Structurep. 271
11.3 Summary of Electronic Structurep. 273
11.4 Other 2-D Structures (Nanosheets)p. 273
11.5 Overview of Synthesis Routesp. 275
11.5.1 Mechanical Exfoliationp. 275
11.5.2 Liquid Phase Exfoliationp. 275
11.5.3 Epitaxial Growthp. 276
11.5.4 Nucleation and Growth of Graphene on SiCp. 276
11.5.5 Catalyst Promoted Nucleation and Growth of Graphenep. 276
11.6 Structural Characterizationp. 277
11.7 Raman Spectroscopic Characterizationp. 281
11.8 Characterization of Electronic Structurep. 282
Referencesp. 286
Chapter 12 Nanostructures-Strategic and Tactical Issuesp. 289
12.1 Thinking about Strategyp. 289
12.2 Thinking about Tacticsp. 289
12.3 Strategic Issuesp. 290
12.3.1 Other Nanostructuresp. 290
12.3.2 Characterization of Nanostructure Ensemblesp. 291
12.4 Preparation of Specimens for Characterization of Nanostructuresp. 292
12.5 Ensemble Averages: Limitationsp. 295
12.6 'Soft' Materials-Specimen Preparationp. 295
12.7 Cleanlinessp. 295
12.8 User-friendlinessp. 296
12.9 Cost-Effectivenessp. 297
Acknowledgementsp. 298
Appendix A Preparation of Cross-Sectional Specimens by the Focussed Ion Beam (FIB) Methodp. 299
General Descriptionp. 299
Typical Instrumentp. 299
Specimen Preparation by FIB Methodsp. 299
Advantagesp. 299
Disadvantagesp. 301
Details of FIB Methodsp. 302
Appendix B (Cryo)Microtomy and Other Methods for Specimen Preparation of Soft Materials (e.g., Polymers and Biomaterials)p. 303
General Overviewp. 303
Typical Instrumentp. 304
Referencesp. 305
Indexp. 307